Pathway - Phase 2 -Data Automation - Echosounders - Automated post-processing, using machine learning algorithms

Understanding the abundance and distribution of fish in tidal energy streams is important for assessing the risks presented by the introduction of tidal energy devices into the habitat. However, tidal current flows suitable for tidal energy development are often highly turbulent and entrain air into the water, complicating the interpretation of echosounder data. The portion of the water column contaminated by returns from entrained air must be excluded from data used for biological analyses. Application of a single algorithm to identify the depth-of-penetration of entrained air is insufficient for a boundary that is discontinuous, depth-dynamic, porous, and varies with tidal flow speed