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FORCE ATTENDS INTERNATIONAL CONFERENCE ON OCEAN ENERGY IN SAN SEBASTIÁN, SPAIN 

 

From October 18 – 20 a small contingent from FORCE attended the ICOE meeting in San Sabastián, Spain.  

The FORCE team gave presentations to an audience of international delegates and attended sessions on a 

variety of topics surrounding marine renewable energy. The event also allowed for several in person 

meetings with tidal energy developers regarding their current and future project plans. read more 

 

SEABIRD RADAR FEASIBILITY STUDY 

 

FORCE has received a technical report from Strum Consulting which highlights challenges with the radar 

data as well as options for moving forward with the feasibility study. This work will continue into next 

year to fully explore the potential utility of radar to monitor for seabirds at the FORCE site. read more 

 

RAP 2022 FISH TAGGING COMPLETE 

 

The 2022 fish tagging under the Risk Assessment Program (RAP) in collaboration with our partners at the 

Mi’kmaw Conservation Group (MCG), local fishers, and DFO Science is complete. read more 

 

VITALITY PLATFORM RECOVERED 

 

After communication with the Vitality platform was interrupted over the summer it was recovered on 

October 17th to diagnose the cause of the communication failure. Post recovery testing determined that 

the failure was caused by corrosion of one of the platform grounding electrical cables. All other 

components continued to function as expected. During its deployment the platform successfully acquired 

data on current speeds, harbour porpoise localization, and provided a live video feed of underwater life 

to guests at the FORCE visitor center. read more 

 

 

 

 

 

 

 

 

 

What’s New? 
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Executive Summary 
 

Tidal stream energy devices are an emerging renewable energy technology that use the ebb and 
flow of the tides to generate electricity. These devices are in various stages of research, 
development, operation and testing in countries around the world.  

FORCE was established in 2009 after undergoing a joint federal-provincial environmental 
assessment with the mandate to enable the testing and demonstration of tidal stream devices. 
Since that time, more than 100 related research studies have been completed or are underway 
with funding from FORCE, Net Zero Atlantic (formally the Offshore Energy Research Association 
(OERA)), and others. These studies have considered physical, biological, socioeconomic, and 
other research areas. 

The current suite of monitoring programs implemented by FORCE build off those initiated during 
2016-2020 that were conducted in anticipation of tidal stream energy device deployments at 
FORCE’s tidal demonstration site. These efforts are divided into two components: FORCE 
monitoring activities (>100 metres from a device), and developer or ‘device-specific’ monitoring 
led by project developers (≤100 metres from a device) at the FORCE site. All plans are reviewed 
by FORCE’s independent Environmental Monitoring Advisory Committee (EMAC) and federal 
and provincial regulators prior to implementation. 

FORCE monitoring presently consists of monitoring for fish, marine mammals, seabirds, lobster, 
and marine sound. During monitoring from 2016 through 2020, FORCE completed: 

• ~564 hours of hydroacoustic fish surveys; 

• more than 5,083‘C-POD’ marine mammal monitoring days; 

• bi-weekly shoreline observations; 

• 49 observational seabird surveys; 

• four drifting marine sound surveys and additional sound monitoring; and 

• 11 days of lobster surveys 

FORCE submitted its 2021-2023 proposed EEMP to regulators in early 2021 and is awaiting 
feedback. The 2021-2023 EEMP is designed to prepare for effects testing with the deployment of 
operational tidal stream energy devices and adheres to the principles of adaptive management 
by evaluating existing datasets to ensure appropriate monitoring approaches are being 
implemented. Moreover, the plan adopts internationally accepted standards for monitoring where 
possible, including feasibility assessments for new monitoring approaches that are planned to be 
implemented. The 2021-2023 EEMP has been implemented as designed and reviewed by 
FORCE’s environmental monitoring advisory committee (EMAC). Device deployments are 
pending and there has not been an opportunity for effects testing under the 2021-2023 proposed 
EEMP.  

Since the beginning of the 2021-2023 EEMP, FORCE has completed; 

• 8 days of lobster surveys;  

• a preliminary radar feasibility study to monitor for seabirds; and 

• bi-weekly shoreline observations 

FORCE is working with academic and Indigenous partner organizations to advance the Risk 
Assessment Program (RAP) for tidal stream energy. This program seeks to develop credible and 
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statistically robust encounter rate models for migratory and resident fish species in Minas 
Passage with tidal stream energy devices. This will be accomplished by combining physical 
oceanographic data related to flow and turbulence in the Minas Passage with hydroacoustic 
tagging information for various fish species in the region curated by the Ocean Tracking Network 
at Dalhousie University. Since the start of the project, FORCE has established a high-resolution 
radar network in Minas Passage and has started to quantify hydrodynamic features in the region 
and build the tidal flow atlas required for the program. FORCE has also started modelling the 
spatiotemporal distributions for the nine species for which sufficient acoustic tracking data is 
available and is developing species distribution maps for each species. In partnership with 
FORCE, the Mi’kmaw Conservation Group (MCG) and local fishers have completed the fish 
tagging component of the program that is required for species distribution and encounter rate 
model validation. To share the results of the modelling work, FORCE is currently exploring the 
development of a user-friendly graphical user interface as a tool for regulators, rights holders, 
stakeholders, industry, and academia to explore the models. A more advanced science-based 
decision support tool that can be used run the models is also being explored. Ultimately, this work 
will contribute towards understanding the risk of tidal stream energy development for fishes in the 
Bay of Fundy and will assist in the development of future environmental effects monitoring 
programs. 

This report provides a summary of monitoring activities and data analyses completed at the 
FORCE site up to the end of 2022. In addition, it also highlights findings from international 
research efforts, previous data collection periods at the FORCE site, and additional research work 
that is being conducted by FORCE and its partners. This includes supporting fish tagging efforts 
with Acadia University and the Ocean Tracking Network, radar research projects, and subsea 
instrumentation platform deployments through the Fundy Advanced Sensor Technology (FAST) 
Program. Finally, the report presents details regarding future research and monitoring efforts at 
the FORCE test site. This includes work in support of the 2022 EEMP and the RAP program. 

All reports, including quarterly monitoring summaries, are available online at 
www.fundyforce.ca/document-collection. 

  

http://www.fundyforce.ca/document-collection
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Introduction 
This report outlines monitoring activities occurring at the Fundy Ocean Research Centre for 
Energy test site in the Minas Passage, Bay of Fundy during 2022. Specifically, this report 
highlights results of environmental monitoring activities conducted by FORCE and other research 
and development activities conducted at the FORCE site. This report also provides a summary of 
international research activities around tidal stream energy devices. 

 

About FORCE 

FORCE was created in 2009 to lead research, demonstration, and testing for high flow, industrial-
scale tidal stream energy devices. FORCE is a not-for-profit entity that has received funding 
support from the Government of Canada, the Province of Nova Scotia, Encana Corporation, and 
participating developers. 

FORCE has two central roles in relation to the demonstration of tidal stream energy converters in 
the Minas Passage: 

1. Host: providing the technical infrastructure to allow demonstration devices to connect to 
the transmission grid; and 

2. Steward: research and monitoring to better understand the interaction between devices 
and the environment. 

The FORCE project currently consists of five undersea berths for subsea tidal energy device 
generators, four subsea power cables to connect the devices to land-based infrastructure, an 
onshore substation and power lines connected to the Nova Scotia Power transmission system, 
and a Visitor Centre that is free and open to the public from May to November annually. These 
onshore facilities are located approximately 10 km west of Parrsboro, Nova Scotia. 

The marine portion of the project is located in a 1.6 km x 1.0 km tidal demonstration area in the 
Minas Passage. It is also identified as a Marine Renewable-electricity Area under the Province’s 
Marine Renewable-energy Act. This area consists of five subsea berths that are leased to tidal 
energy companies1 selected by the Nova Scotia Department of Natural Resources and 
Renewables. Current berth holders at FORCE are: 

 Berth A: Minas Tidal Limited Partnership 
 Berth B: Rio Fundo Operations Canada Limited2 
 Berth C: Sustainable Marine Energy (Canada)3 
 Berth D: Big Moon Power Canada 
 Berth E: Halagonia Tidal Energy Limited4 

Research, monitoring, and associated reporting is central to FORCE’s steward role, to assess 
whether tidal stream energy devices can operate in the Minas Passage without causing significant 
adverse effects on the environment, electricity rates, and other users of the Bay. 

 
1 Further information about each company may be found at: fundyforce.ca/partners 
2 On April 30, 2019 the Department of Energy and Mines approved the transfer of the Project Agreement and FIT 
approvals from Atlantis Operations (Canada) Ltd. to Rio Fundo Operations Canada Ltd.  
3 On May 15, 2019 the Department of Energy and Mines issued an approval for Black Rock Tidal Power to change 
its name to Sustainable Marine Energy (Canada) Ltd. with the transfer of assets from SCHOTTEL to Sustainable 
Marine Energy.  
4 Berth E does not have a subsea electrical cable provided to it. 

https://fundyforce.ca/partners
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As part of this mandate FORCE has a role to play in supporting informed, evidence-based 
decisions by regulators, industry, rightsholders, the scientific community, and the public. As 
deployments of different technologies are expected to be phased in over the next several years, 
FORCE and regulators will have the opportunity to learn and adapt environmental monitoring 
approaches as lessons are learned. 

 

Background 
The FORCE demonstration project received its environmental assessment (EA) approval on 
September 15, 2009 from the Nova Scotia Minister of Environment. The conditions of its EA 
approval5 provide for comprehensive, ongoing, and adaptive environmental management. The 
EA approval has been amended since it was issued to accommodate changes in technologies 
and inclusion of more berths to facilitate provincial demonstration goals. 

In accordance with this EA approval, FORCE has been conducting an Environmental Effects 
Monitoring Program (EEMP) to better understand the natural environment of the Minas Passage 
and the potential effects of tidal stream energy devices as related to fish, seabirds, marine 
mammals, lobster, marine sound, benthic habitat, and other environmental variables. All reports 
on site monitoring are available online at: www.fundyforce.ca/document-collection. 

Since 2009, more than 100 related research studies have been completed or are underway with 
funding from FORCE, Net Zero Atlantic (formally the Offshore Energy Research Association 
(OERA)) and others. These studies have considered socioeconomics, biological, and other 
research areas.6 

Monitoring at the FORCE site is currently focused on lobster, fish, marine mammals, seabirds, 
and marine sound and is divided into developer (≤ 100 m from a device) and FORCE led (> 100 
m from a device) monitoring. As approved by regulators, individual berth holders complete 
monitoring in direct vicinity of their device(s), in recognition of the unique design and operational 
requirements of different technologies. FORCE completes site level monitoring activities as well 
as supporting integration of data analysis between these monitoring zones, where applicable. 

All developer and FORCE monitoring programs are reviewed by FORCE’s Environmental 
Monitoring Advisory Committee (EMAC), which includes representatives from scientific, First 
Nations, and local fishing communities.7 These programs are also reviewed by federal and 
provincial regulators prior to device installation. In addition, FORCE and berth holders also submit 
an Environmental Management Plan (EMP) to regulators for review prior to device installation. 
EMP’s include environmental management roles and responsibilities and commitments, 
environmental protection plans, maintenance and inspection requirements, training and education 
requirements, reporting protocols, and more. 
 

 
5 FORCE’s Environmental Assessment Registration Document and conditions of approval are found online at: 
www.fundyforce.ca/document-collection. 
6 Net Zero Atlantic Research Portal (https://netzeroatlantic.ca/research) includes studies pertaining to 
infrastructure, marine life, seabed characteristics, socio-economics and traditional use, technology, and site 
characterization. 
7 Information about EMAC may be found online at: www.fundyforce.ca/about-us 

http://www.fundyforce.ca/document-collection
https://netzeroatlantic.ca/research
http://www.fundyforce.ca/about-us
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Tidal Stream Energy Device Deployments 
Since FORCE’s establishment in 2009, tidal stream energy devices have been installed at the 
FORCE site three times: once in 2009/2010, November 2016 – June 2017, and July 2018 – 
present. Given the limited timescales in which a device has been present and operating at the 
FORCE site, environmental studies to-date have largely focused on the collection of baseline data 
and developing an understanding of the capabilities of monitoring devices in high flow tidal 
environments.  

On July 22, 2018, CSTV installed a two-megawatt OpenHydro turbine at Berth D of the FORCE 
site and successfully connected the subsea cable to the turbine. CSTV confirmed establishment 
of communication with the turbine systems on July 24. On July 26, 2018, Naval Energies 
unexpectedly filed a petition with the High Court of Ireland for the liquidation of OpenHydro Group 
Limited and OpenHydro Technologies Limited.8 For safety purposes, the turbine was isolated 
from the power grid that same day. On September 4, 2018, work began to re-energize the turbine, 
but soon afterwards it was confirmed that the turbine’s rotor was not turning. It is believed that an 
internal component failure in the generator caused sufficient damage to the rotor to prevent its 
operation. Environmental sensors located on the turbine and subsea base continued to function 
at that time except for one hydrophone. 

As a result of the status of the turbine, the monitoring requirements and reporting timelines set 
out in CSTV’s environmental effects monitoring program were subsequently modified under 
CSTV’s Authorization from Fisheries and Oceans Canada. The modification requires that CSTV 
provide written confirmation to regulators monthly that the turbine is not spinning by monitoring 
its status during the peak tidal flow of each month. This began October 1, 2018 and was expected 
to continue until the removal of the turbine; however, as a result of the insolvency of OpenHydro 
Technology Ltd., all developer reporting activities by CSTV ceased as of March 1, 2019. FORCE 
subsequently provided monthly reports to regulators confirming the continued non-operational 
status of the CSTV turbine from March 2019 – May 2020 and received authorization from the 
Nova Scotia Department of Environment on June 2, 2020, to conclude these monthly reports. 

In September 2020, Big Moon Canada Corporation (Big Moon) was announced as the successful 
applicant to fill berth D at the FORCE test site following a procurement procedure administered 
by Power Advisory LLC. As part of the agreement, Big Moon has provided a $4.5 million security 
deposit to remove the non-operational CSTV turbine currently deployed at berth D, and has until 
December 31, 2024 to raise the turbine. The project start date for BigMoon is largely dependent 
on the economic recovery from the COVID-19 pandemic and the potential impact to Big Moon’s 
supply chain. As such, the project start date is not known at this time. 

Additional devices are expected to be deployed at the FORCE site in the coming years. In 2018, 
Sustainable Marine Energy (formerly Black Rock Tidal Power) installed a PLAT-I system in Grand 
Passage, Nova Scotia under a Demonstration Permit.9 This permit allows for a demonstration of 
the 280 kW system to help SME and its partners learn about how the device operates in the 
marine environment of the Bay of Fundy. On May 11, 2022, SME announced it has successfully 
delivered the first floating tidal stream energy to Nova Scotia’s power grid.10 Also in 2018, Natural 
Resources Canada announced a $29.8 million contribution to Halagonia Tidal Energy’s project at 

 
8 See original news report: https://www.irishexaminer.com/breakingnews/business/renewable-energy-firms-with-
more-than-100-employees-to-be-wound-up-857995.html. 
9 To learn more about this project, see: https://novascotia.ca/news/release/?id=20180919002. 
10 To learn more about this project, see: https://www.sustainablemarine.com/press-releases/sustainable-marine-
delivers-first-floating-tidal-power-to-nova-scotia-grid. 

https://www.irishexaminer.com/breakingnews/business/renewable-energy-firms-with-more-than-100-employees-to-be-wound-up-857995.html
https://www.irishexaminer.com/breakingnews/business/renewable-energy-firms-with-more-than-100-employees-to-be-wound-up-857995.html
https://novascotia.ca/news/release/?id=20180919002
https://www.sustainablemarine.com/press-releases/sustainable-marine-delivers-first-floating-tidal-power-to-nova-scotia-grid
https://www.sustainablemarine.com/press-releases/sustainable-marine-delivers-first-floating-tidal-power-to-nova-scotia-grid
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the FORCE site through its Emerging Renewable Power Program.11 The project consists of 
submerged turbines for a total of nine megawatts – enough capacity to provide electricity to an 
estimated 2,500 homes. 

Each berth holder project will be required to develop a device-specific monitoring program, which 
will be reviewed by FORCE’s EMAC and federal and provincial regulators including Fisheries and 
Oceans Canada, the Nova Scotia Department of Environment, and the Nova Scotia Department 
of Energy and Mines prior to device installation. 

Overall, the risks associated with single device or small array projects are anticipated to be low 
given the relative size/scale of devices (Copping 2018). For example, at the FORCE site a single 
two-megawatt OpenHydro turbine occupies ~ 1/1,000th of the cross-sectional area in the Minas 
Passage (Figure 1). A full evaluation of the risks of tidal stream energy devices, however, will not 
be possible until more are tested over a longer-term period with monitoring that documents local 
impacts, considers far-field and cumulative effects, and adds to the growing global knowledge 
base. 

 
Figure 1: The scale of a single turbine (based on the dimensions of the OpenHydro turbine 
deployed by CSTV, indicated by the red dot and above the blue arrow) in relation to the cross-
sectional area of the Minas Passage. The Passage reaches a width of ~ 5.4 km and a depth of 
130 m. 

 

International Experience & Cooperation 
The research and monitoring being conducted at the FORCE test site is part of an international 
effort to evaluate the risks tidal energy poses to marine life (Copping 2018; Copping and Hemery 
2020). Presently, countries such as China, France, Italy, the Netherlands, South Korea, the United 
Kingdom, and the United States (Marine Renewables Canada 2018) are exploring tidal energy, 
supporting environmental monitoring and innovative R&D projects. Tidal energy and other marine 
renewable energy (MRE) technologies such as tidal range, tidal current, wave, and ocean thermal 
energy offer significant opportunities to replace carbon fuel sources in a meaningful and 
permanent manner. Some estimates place MRE’s potential as exceeding current human energy 
needs (Lewis et al. 2011; Gattuso et al. 2018). Recent research includes assessments of 
operational sounds on marine fauna  (Schramm et al. 2017; Lossent et al. 2018; Robertson et al. 
2018; Pine et al. 2019), the utility of PAM sensors for monitoring marine mammal interactions with 
turbines (Malinka et al. 2018) and collision risk (Joy et al. 2018b), demonstrated avoidance 
behavior by harbour porpoise around tidal turbines (Gillespie et al. 2021), a synthesis of known 
effects of marine renewable energy devices on fish (Copping et al. 2021), and the influence of 
tidal turbines on fish behavior (Fraser et al. 2018). 

Through connections to groups supporting tidal energy demonstration and R&D, FORCE is 
working to inform the global body of knowledge pertaining to environmental effects associated 

 
11 To learn more about this announcement, see: https://www.canada.ca/en/natural-resources-
canada/news/2018/09/minister-sohi-announces-major-investment-in-renewable-tidal-energy-that-will-power-
2500-homes-in-nova-scotia.html. 

https://www.canada.ca/en/natural-resources-canada/news/2018/09/minister-sohi-announces-major-investment-in-renewable-tidal-energy-that-will-power-2500-homes-in-nova-scotia.html
https://www.canada.ca/en/natural-resources-canada/news/2018/09/minister-sohi-announces-major-investment-in-renewable-tidal-energy-that-will-power-2500-homes-in-nova-scotia.html
https://www.canada.ca/en/natural-resources-canada/news/2018/09/minister-sohi-announces-major-investment-in-renewable-tidal-energy-that-will-power-2500-homes-in-nova-scotia.html
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with tidal power projects. This includes participation in the Fundy Energy Research Network12, the 
Bay of Fundy Ecosystem Partnership13, TC11414, the Atlantic Canadian-based Ocean 
Supercluster15, and OES-Environmental16.  

FORCE will continue to work closely with OES-Environmental and its members to document and 
improve the state of knowledge about the interactions of MRE devices interactions with the marine 
environment. To that end, Dr. Hasselman served as a guest editor alongside Dr. Huidong Li 
(Pacific Northwest National Laboratory), Dr. Emma Cotter (Woods Hole Oceanographic Institute) 
and Dr. James Joslin (University of Washington) for a special issue of Frontiers in Marine Science 
entitled ‘Novel Technologies for Assessing the Environmental and Ecological Impacts of Marine 
Renewable Energy Systems’. The editorial team advertised the special issue on the Tethys 
website and received nine abstracts from researchers developing cutting-edge technologies for 
monitoring around marine renewable energy devices. Full manuscript submissions were due by 
January 9, 2022 and the special issue is now published17. A selection of the published papers are 
found in Appendices II – V. 

Additionally, OES-Environmental is pursuing the development of new research topics for the 2024 
State of the Science Report related to i) knowledge of environmental effects as the tidal energy 
industry scales up from single devices to arrays, ii) understanding the cumulative impacts of 
marine renewable energy with other anthropogenic effects, and iii) an ecosystem approach for 
understanding environmental effects, including interactions between trophic levels, between 
ecosystems and between ecosystem services. Dr. Hasselman is involved in the development of 
all three of these topics but is leading the effort to understand the environmental effects of ‘scaling 
up’. 

On April 7th, FORCE hosted a half-day workshop in Halifax focused on advancing 

understanding of the precautionary principle as it applies to the regulation of the marine 

renewable energy sector. The purpose of this workshop was to bring together stakeholders, 

rights holders and regulators to better understand the precautionary principle and the benefits 

and challenges it brings to regulating and advancing tidal development. The workshop consisted 

of three speakers who shared their knowledge on the precautionary principle which had 39 

participants (29 in person and 10 virtual). Presentations were followed by breakout group 

discussions. A report on key takeaways is currently in development and will be available later 

this year.  

 
12 FERN is a research network designed to” coordinate and foster research collaborations, capacity building and 
information exchange” (Source: fern.acadiau.ca/about.html). FORCE participates in the Natural Sciences, 
Engineering, and Socio-Economic Subcommittees of FERN. 
13 BoFEP is a ‘virtual institute’ interested in the well-being of the Bay of Fundy. To learn more, see www.bofep.org. 
14 TC114 is the Canadian Subcommittee created by the International Electrotechnical Commission (IEC) to prepare 
international standards for marine energy conversion systems. Learn more: tc114.oreg.ca. 
15 The OSC was established with a mandate to “better leverage science and technology in Canada’s ocean sectors 
and to build a digitally-powered, knowledge-based ocean economy.” Learn more: www.oceansupercluster.ca. 
16 OES Environmental was established by the International Energy Agency (IEA) Ocean Energy Systems (OES) in 
January 2010 to examine environmental effects of marine renewable energy development. Member nations 
include: Australia, China, Canada, Denmark, France, India, Ireland, Japan, Norway, Portugal, South Africa, Spain, 
Sweden, United Kingdom, and United States. Further information is available at https://tethys.pnnl.gov. 
17 Novel Technologies for Assessing the Environmental and Ecological Impacts of Marine Renewable Energy 
Systems - https://www.frontiersin.org/research-topics/19503/novel-technologies-for-assessing-the-
environmental-and-ecological-impacts-of-marine-renewable-energy#articles 

https://www.frontiersin.org/research-topics/19503/novel-technologies-for-assessing-the-environmental-and-ecological-impacts-of-marine-renewable-energy
https://www.frontiersin.org/research-topics/19503/novel-technologies-for-assessing-the-environmental-and-ecological-impacts-of-marine-renewable-energy
http://fern.acadiau.ca/about.html
http://www.bofep.org/
http://tc114.oreg.ca/
http://www.oceansupercluster.ca/
https://tethys.pnnl.gov/
https://www.frontiersin.org/research-topics/19503/novel-technologies-for-assessing-the-environmental-and-ecological-impacts-of-marine-renewable-energy#articles
https://www.frontiersin.org/research-topics/19503/novel-technologies-for-assessing-the-environmental-and-ecological-impacts-of-marine-renewable-energy#articles
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Dr. Hasselman chaired a session at the Pan American Marine Energy Conference in Ensenada, 
Mexico on June 17th entitled ‘The role of MRE test centers in facilitating MRE development’. The 
afternoon session included 5 presentations which provided an overview of the role of marine 
renewable energy (MRE) test centers in device testing and their capacity to demonstrate the utility 
of monitoring technologies and approaches for understanding environmental effects of MRE 
devices. The presentations and round table discussions built on the first workshop held at PAMEC 
2020 in Costa Rica and fostered dialogue around the value of test centers like FORCE and their 
role in building social license and addressing questions relevant to the establishment of MRE 
technologies regionally.  

On August 22nd Dr. Hasselman attended the American Fisheries Society 152nd annual meeting 
held in Spokane, Washington. During a symposium on offshore wind in the United States, Dr. 
Hasselman presented on the Risk Assessment Program (RAP) species distribution modelling 
framework. Species distribution models are a commonly used tool for understanding the effects 
of offshore wind projects as well, and it is encouraging that this approach is applicable across 
marine renewable energy sectors. 

From October 18 – 20 a small contingent from FORCE attended the International Conference on 
Ocean Energy (ICOE) in San Sebastián, Spain which consisted of Lindsay Bennett, Dan 
Hasselman, and Joel Culina. Dr. Hasselman participated in a session entitled “Determining the 
environmental impact of a marine energy installation” and gave a presentation titled "Scaling up 
our understanding of environmental effects of MRE devices from single devices to large-scale 
commercial arrays". Dan co-authored two additional presentations entitled "Cumulative effects 
assessment for marine renewable energy" presented by Dr. Lenaïg Hemery (OES-
Environmental) and "The ecosystem approach applied to marine renewable energies: application 
and knowledge gaps" presented by Dr. Georges Safi at France Energie Marines. Dan also 
participated in a workshop co-hosted by OES-Environmental and Aquaterra entitled 
“Environmental monitoring around deployed marine energy devices” as well as several meetings 
with tidal energy developers regarding current and future projects. Lindsay participated in a 
session entitled “Slashing consenting time to 12 months (or less)” and gave a presentation titled 
“Building collaborative approaches to risk assessment and project approval”. Finally, Joel co-
authored a poster presented at the conference entitled “Can we trust turbulence models?” which 
won first prize at the poster session.  

FORCE Monitoring Activities 
FORCE has been leading site-level monitoring for several years, focusing on a variety of 
environmental variables. FORCE’s previous environmental effects monitoring program (2016-
2020) was developed in consultation with SLR Consulting (Canada)18 and was strengthened by 
review and contributions by national and international experts and scientists, DFO, NSE, and 
FORCE’s EMAC. The most recent version of the EEMP (2021-2023) was developed in 
consultation with Atlantis Watershed Consultants Ltd. with input from national and international 
experts, including FORCE’s EMAC, and has been submitted to regulators for approval. The 2021-
2023 EEMP has been modified from the 2016-2020 EEMP based on results of previous 
monitoring activities, experience and lessons learned. This is consistent with the adaptive 
management approach inherent to the FORCE EEMP – the process of monitoring, evaluating 

 
18 This document is available online at: www.fundyforce.ca/document-collection. 

http://www.fundyforce.ca/document-collection
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and learning, and adapting (AECOM 2009) that has been used at the FORCE site since its 
establishment in 2009.19 

FORCE’s EEMP currently focuses on the impacts of operational tidal stream energy devices on 
lobster, fish, marine mammals, and seabirds as well as the impact of device-produced sound. 
Overall, these research and monitoring efforts, detailed below, were designed to test the 
predictions made in the FORCE EA. As mentioned in the Executive Summary, since the beginning 
of the 2016-2020 EEMP, FORCE has completed approximately:  

• 564 hours of hydroacoustic fish surveys; 

• more than 5,083‘C-POD’ (marine mammal monitoring) days; 

• bi-weekly shoreline observations; 

• 49 observational seabird surveys; 

• four drifting marine sound surveys and additional bottom-mounted instrument sound data 
collection; and 

• 11 days of lobster surveys. 

Since the beginning of the 2021-2023 EEMP, FORCE has completed: 

• 8 days of lobster surveys;  

• a preliminary radar feasibility study to monitor for seabirds; and 

• bi-weekly shoreline observations 

The following pages provide a summary of the site-level monitoring activities conducted at the 
FORCE site up to the end of 2022 including data collection, data analyses performed, initial 
results, and lessons learned, that builds on activities and analyses from previous years. Where 
applicable, this report also presents analyses that have integrated data collected through 
developer and FORCE monitoring programs to provide a more complete understanding of device-
marine life interactions. 

 

Monitoring Objectives 
The overarching purpose of environmental monitoring is to test the accuracy of the environmental 
effect predictions made in the original EA. These predictions were generated through an 
evaluation of existing physical, biological, and socioeconomic conditions of the study area, and 
an assessment of the risks the tidal energy demonstration project poses to components of the 
ecosystem. 

A comprehensive understanding of device-marine life interactions will not be possible until device-
specific and site-level monitoring efforts are integrated, and additional data is collected in relation 
to operating tidal stream energy devices. Further, multi-year data collection will be required to 
consider seasonal variability at the FORCE test site and appropriate statistical analyses of this 
data will help to obtain a more complete understanding of device-marine life interactions. 

Table 1 outlines the objectives of the site-level monitoring activities conducted at the FORCE 
demonstration site. FORCE led site-level monitoring summaries will be updated as devices are 
scheduled for deployment at FORCE. At this time, and considering the scale of device 

 
19 The adaptive management approach is necessary due to the unknowns and difficulties inherent with gathering 
data in tidal environments such as the Minas Passage and allows for adjustments and constant improvements to 
be made as knowledge about the system and environmental interactions become known. This approach has been 
accepted by scientists and regulators. 
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deployments in the near-term at FORCE, it is unlikely that significant effects in the far-field will be 
measurable (SLR Consulting 2015). Far-field studies such as sediment dynamics will be deferred 
until such time they are required. However, recent discussions with scientists serving on FORCE’s 
EMAC suggests that the natural variability inherent to the upper Bay of Fundy ecosystem far 
exceeds what could be measured by far-field monitoring efforts. Moreover, the scale of tidal power 
development would need to surpass what is possible at the FORCE tidal demonstration site to 
extract sufficient energy from the system to have any measurable effects. In short, far-field 
monitoring would be futile unless tidal power development transitions from demonstration scale 
to commercial arrays. As more devices are scheduled for deployment at the FORCE site and as 
monitoring techniques are improved, monitoring protocols will be revised in keeping with the 
adaptive management approach. These studies will be developed in consultation with FORCE’s 
EMAC, regulators, and key stakeholders. 

 

Table 1: The objectives of each of the environmental effects monitoring activities, which consider 
various Valued Ecosystem Components (VECs), led by FORCE. 

FORCE 
Environmental 
Effects Monitoring 
VEC 

Objectives 

Lobster ● to determine if the presence of a tidal stream energy device affects 
commercial lobster catches 

Fish ● to test for indirect effects of tidal stream energy devices on water column fish 
density and fish vertical distribution 

● to estimate probability of fish encountering a device based on fish density 
proportions in the water column relative to device depth in the water column 

Marine Mammals ● to determine if there is permanent avoidance of the study area during device 
operations 

● to determine if there is a change in the distribution of a portion of the 
population across the study area 

Marine Sound 
(Acoustics) 

● to conduct ambient sound measurements to characterize the soundscape 
prior to and following deployment of the tidal stream energy device  

Seabirds ● to understand the occurrence and movement of bird species in the vicinity of 
tidal stream energy devices 

● to confirm FORCE’s Environmental Assessment predictions relating to the 
avoidance and/or attraction of birds to tidal stream energy devices 

 
Lobster 
FORCE conducted a baseline lobster catchability survey in fall 2017 (NEXUS Coastal Resource 
Management Ltd. 2017). This catch-and-release survey design was conducted over 11 days and 
consisted of commercial traps deployed at varying distances around the future location of the 
CSTV turbine deployment planned for 2018. Captured lobsters were measured (carapace length), 
had their sex and reproductive stage determined (male, female, and berried female), and shell 
condition evaluated. This baseline survey captured 351 lobsters and reported a high catchability 
rate (> 2.7 kg/trap).20 Preliminary qualitative analyses indicated that catch rates declined during 
the survey and were associated with increasing tidal velocities; a statistically significant negative 

 
20 This is classified as ‘high’ according to DFO’s Catch Per Unit Effort (CPUE) index (Serdynska and Coffen-Smout, 
2017). 
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relationship was detected between catch rates and maximum tidal range. No significant difference 
in catch rates was detected across separate locations from the proposed turbine deployment site. 
Cumulatively, these results suggested that the impact of turbines may be higher on lobster 
catchability than anticipated in the EA (AECOM 2009), but a repeat of the study in the presence 
of an operational device is required to verify this prediction. 
 
Indeed, a repeat of this catchability survey was planned for fall 2018 in the presence of an 
operational turbine to test the EA prediction (with pre-installation and operating turbine collection 
periods) that tidal stream energy devices will have minimal have impacts on lobster populations 
within the FORCE test site (AECOM 2009). However, given the non-operational status of the 
CSTV turbine, the objectives of the 2018 survey effort could not be achieved, and the survey has 
been postponed until an operational device is present at the site. 

In 2019, FORCE commissioned TriNav Fisheries Consultants Ltd. to redesign FORCE’s lobster 
monitoring program based on feedback from regulators to include a more statistically robust study 
design for monitoring lobster at the FORCE test site. TriNav Fisheries Consultants evaluated the 
efficacy of using a variety of methods including divers and hydroacoustic tags to track lobster 
movements. However, given the strong tidal flows and brief window available during periods of 
slack tide, divers are not a viable option due to safety concerns. Ultimately, TriNav Fisheries 
Consultants identified the combination of a modified catchability survey design and a mark-
recapture study using conventional tags as the best approach for monitoring lobster at the FORCE 
site. This study design was implemented in fall 2021 in partnership with the Fishermen and 
Scientists Research Society (FSRS; Figure 1) and with the assistance of a local lobster fisher. 
There were two phases to the study – each centered around the two neap tide phases in 
September to ensure trap recovery. During each phase, nine experimental lobster traps were 
deployed in and around the FORCE tidal demonstration site. Traps were hauled after 24 hours 
and lobsters were measured, assessed, and tagged prior to being released back to the water. 
The first phase of the study occurred during August 29-September 2, and the second phase took 
place during September 27-October 1. The study captured 582 lobster and tagged and released 
477 of them – some of which were recaptured during the commercial lobster season in LFA 35, 
and their tag numbers and capture coordinates reported to FORCE. Preliminary results suggest 
a high catchability rate during the fall survey which is comparable to available commercial data 
from DFO. The final report from this monitoring program is currently undergoing edits and will be 
available soon. Shaun Allain, FORCE Environmental Program Manager, presented the initial 
results of this survey at the FSRS annual conference and AGM on March 24th.  
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Figure 1: Lobster scientist from the Fishermen and Scientist Research Society showing a tagged 
lobster prior to release. 

 

Fish 
FORCE has been conducting mobile fish surveys since May 2016 to test the EA prediction that 
tidal stream energy devices are unlikely to cause substantial impacts to fishes at the test site 
(AECOM 2009). To that end, the surveys are designed to:  

• test for indirect effects of tidal stream energy devices on water column fish density and 
fish vertical distribution; and 

• estimate the probability of fish encountering a device based on any ‘co-occurrence’ 
relative to device depth in the water column.  

Moreover, these surveys follow a ‘BACI’ (Before/After, Control/Impact) design to permit a 
comparison of data collected before a device is installed with data collected while a device is 
operational at the FORCE site, and in relation to a reference site along the south side of the Minas 
Passage. These 24-hour mobile surveys encompass two tidal cycles and day/night periods using 
a scientific echosounder, the Simrad EK80, mounted on a vessel, the Nova Endeavor (Huntley’s 
Sub-Aqua Construction, Wolfville, NS). This instrument is an active acoustic monitoring device 
and uses sonar technology to detect fish by recording reflections of a fish’s swim bladder. 

Analyses of hydroacoustic fish surveys completed during baseline studies in 2011 and 2012 
(Melvin and Cochrane 2014) and surveys during May 2016 – August 2017 (Daroux and Zydlewski 
2017) evaluated changes in fish densities in association with diel stage (day/night), tidal stage 
(ebb/flood), and device presence or absence (an OpenHydro turbine was present November 2016 
– June 2017). Results support the EA prediction that tidal stream devices have minimal impact 
on marine fishes. However, additional surveys in relation to an operating device are required to 
fully test this prediction. 
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In 2019, the University of Maine conducted a thorough analysis for 15 fish surveys conducted by 
FORCE from 2011-2017. The hydroacoustic data set included six ‘historical’ surveys conducted 
between August 2011 and May 2012, and nine ‘contemporary’ surveys conducted between May 
2016 and August 2017. The analyses included comparisons of fish presence/absence and relative 
fish density with respect to a series of temporal (historical vs. contemporary, or by survey), spatial 
(CLA vs. reference study area, or by transect) and environmental (tide phase, diel state, or 
with/against predicted tidal flow) explanatory variables. The report identified a statistically 
significant difference in fish presence/absence and relative fish density between the historical and 
contemporary data sets that may be attributable to differences in the survey design/execution 
between the time periods, or could reflect changes in fish usage of the site. As such, remaining 
analyses were restricted to the contemporary data sets. The results revealed that: i) data 
collection during the ebb tide and at night are important for understanding fish presence in the 
CLA, ii) various explanatory variables and their additive effects should be explored further, and 
iii) increasing the frequency of surveys during migratory periods (consecutive days in spring/fall) 
may be required to understand patterns and variability of fish presence and density in Minas 
Passage. Importantly, the report suggested a statistically significant difference in fish 
presence/absence and relative density between the CL and reference site, suggesting that the 
reference site may not be sufficiently representative to serve as a control for the CLA, and for 
testing the effects of an operational device on fish density and distribution in Minas Passage. 
Additional work is underway using data from eight additional contemporary fish surveys (2017-
2018) to determine whether this finding is biologically meaningful, or whether it is simply a 
statistical artefact of how the data was aggregated in the original analysis. 

Because complex hydrodynamic features of the Minas Passage introduce turbulence and bubbles 
into the water column that interfere with the use of hydroacoustics, FORCE’s mobile fish surveys 
have been optimized for collecting data during the best neap tidal cycle per month when 
turbulence is greatly reduced. However, this approach limits the number of surveys that can be 
conducted, and regulators have suggested that the scope of the program be expanded so that 
survey results are more representative of how fish use the Minas Passage. To that end, FORCE 
conducted multiple fish surveys during each of three neap tidal cycles in fall 2020 (i.e., September 
25, 27, 29; October 7, 9, 13; and October 24, 26, 29) to determine whether variation in fish density 
and distribution for any given survey within a neap cycle was representative of the other surveys 
conducted during that same time frame. Previous work comparing stationary and mobile 
hydroacoustic surveys in Minas Passage found that the temporal representative range of a 24-hr 
mobile was approximately three days (Viehman et al. 2019).  

A recent study (Viehman et al. (2022), Appendix II) examined entrained air contamination in 
echosounder data collected at the FORCE test site. It found that fish abundance estimates in the 
lower 70% of the water column and current speeds less than 3 m/s were well represented in that 
there was little contamination of the data set from entrained air. However, undersampling of the 
upper water column and faster speeds strongly affected fish abundance estimates especially 
during strong spring tides. This means that data collected during neap tides are more likely to 
yield a more accurate picture of fish abundance and distribution than those collected during spring 
tides. The study also highlighted how estimates of fish abundance may be affected differently 
depending on where fish are in the water column. For example, (hypothetical) fish located at mid-
depths were omitted from the data more often as current speeds increased. These findings 
indicate a complex and dynamic ecosystem where the interactions of water movement and fish 
distribution affect our ability to infer how fish populations may interact with tidal power devices in 
the Minas Passage. The use of acoustic telemetry being studied under the RAP program could 
be used concurrently with echosounders to fill gaps in datasets and optimize what can be learned 
about fish abundance and distribution at tidal energy sites.  

https://www.frontiersin.org/articles/10.3389/fmars.2022.851400/full
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Another issue with the entrained air found in high flow environments is the need to remove the 
contaminated data prior to analysis which is often a tedious and time-consuming process. Existing 
algorithms used to identify the depth-of-penetration of entrained air are insufficient for a boundary 
that is discontinuous, depth-dynamic, porous, and varies with tidal flow speed. Using a case study 
from data obtained at the FORCE test site a recent study (Lowe et al. (2022), Appendix III) 
described the development and application of a deep machine learning model called Echofilter. 
Echofilter was found to be highly responsive to dynamic range of turbulence conditions in the data 
and produced an entrained-air boundary line with an average error of less than half that of the 
existing algorithms. The model had a high level of agreement with human data trimming. This 
resulted in 50% reduction in the time required for manual edits to the data set when using currently 
available algorithms to trim the data. 

FORCE is currently working towards a development of a comprehensive fish synthesis that will 
bring together existing knowledge of fish distribution, abundance, and use of the Minas Passage 
using existing literature from stock assessments, prior hydroacoustic surveys, acoustic telemetry-
based surveys, as well as other relevant sources of information. This synthesis will focus on 
species of conservations concern, cultural relevance, and commercial and recreational value. The 
results of this synthesis project will be available in 2023 and will help to determine the extent to 
which questions regarding fish and tidal energy project permitting have been answered and 
identifying remaining knowledge gaps. Dr. Graham Daborn at Acadia University is leading this 
work and a final report is expected early in 2023.  

 

Marine Mammals 
Since 2016, FORCE has been conducting two main activities to test the EA prediction that project 

activities are not likely to cause significant adverse residual effects on marine mammals within 

the FORCE test site (AECOM 2009): 

• passive acoustic monitoring (PAM) using ‘click recorders’ known as C-PODs; and 

• an observation program that includes shoreline, stationary, and vessel-based 

observations. 

Passive Acoustic Monitoring 
The first component of FORCE’s marine mammal monitoring program involves the use of PAM 
mammal detectors known as C-PODs, which record the vocalizations of toothed whales, 
porpoises, and dolphins.21 The program focuses mainly on harbour porpoise – the key marine 
mammal species in the Minas Passage that is known to have a small population that inhabits the 
inner Bay of Fundy (Gaskin 1992). The goal of this program is to understand if there is a change 
in marine mammal presence in proximity to a deployed tidal stream energy device and builds 
upon baseline C-POD data collection within the Minas Passage since 2011. 

From 2011 to early 2018, more than 4,845 ‘C-POD days’22 of data were collected in the Minas 
Passage. Over the study period, it was found that harbour porpoise use and movement varies 
over long (i.e., seasonal peaks and lunar cycles) and short (i.e., nocturnal preference and tide 

 
21 The C-PODs, purchased from Chelonia Limited, are designed to passively detect marine mammal ‘clicks’ from 
toothed whales, dolphins, and porpoises. 
22 A ‘C-POD day’ refers to the number of total days each C-POD was deployed times the number of C-PODs 

deployed. 

https://www.frontiersin.org/articles/10.3389/fmars.2022.867857/full
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stage) timescales. This analysis, completed by Sea Mammal Research Unit (Canada) 
(Vancouver, BC), showed some evidence to suggest marine mammal exclusion within the vicinity 
of CSTV turbine when it was operational (November 2016 – June 2017) (Joy et al. 2018a). This 
analysis revealed that the C-PODs in closest proximity to the turbine (230 m and 210 m distance) 
had reduced frequency of detections, but no evidence of site avoidance with a device present and 
operating. These findings also revealed a decrease in detections during turbine installation 
activities, consistent with previous findings (Joy et al. 2017), but requiring additional data during 
an operational device to permit a full assessment of the EA predictions.  

This monitoring program demonstrates the prevalence of harbour porpoise at FORCE, with the 
species being detected on 98.8% of the 1,888 calendar days since monitoring with C-PODs 
commenced in 2011. Harbour porpoise detections at FORCE varies seasonally, with peak activity 
occurring during May – August, and lowest detections during December – March. Harbour 
porpoise detections also vary spatially, with C-PODs deployed at locations W2 and S2 recording 
the greatest detection rates, and D1 values typically low. Mean lost time across C-PODs, due to 
ambient flow noise saturating the detection buffer on the C-POD, averaged 22.6%. Interestingly, 
an analysis against past datasets that controlled for time of year, indicated that the effects of the 
non-operational CSTV turbine structure had no detectable effect on the rate of harbour porpoise 
detection. 

SMRU provided their 4th year final report of harbour porpoise monitoring using C-PODs at the 

FORCE test site (Palmer et al. 2021). The report describes the results of C-POD deployments 

#11-12 (i.e., 1,043 days of monitoring from August 2019 – September 2020), and places the 

results in the broader context of the overall marine mammal monitoring program at FORCE. The 

final report includes summary data that revealed that harbour porpoise was detected on a least 

one C-POD every day, with a median value of 11 and 17 minutes of porpoise detections per day 

during deployments 11 and 12, respectively. The mean percent lost time due to ambient flow and 

sediment noise was 19.5% and 23.8%, respectively, comparable to previous deployments. 

Overall, the final report supports previous findings of monitoring activities that harbour porpoise 

are prevalent at the FORCE test site. 

The final report also reiterates that sufficient baseline data has been collected to meet the goals 

of the EEMP. As such, FORCE has recommended in its 2021-2023 EEMP proposal that the 

collection of additional baseline harbour porpoise data using C-PODs be suspended until an 

operational device is deployed at the FORCE site. Upon receiving confirmation that a device will 

be deployed at the tidal demonstration area, FORCE will deploy C-PODs prior to the construction 

phase to begin collecting data and assessing any changes to harbour porpoise detections in the 

presence of an operational device. FORCE is currently working with SMRU to continue with this 

monitoring program when operational devices are present.  

 

Harbor porpoise (Phocoena phocoena) monitoring at the FORCE Test Site, Canada featured on 

Tethys (by FORCE and SMRU): https://tethys.pnnl.gov/stories/harbor-porpoise-phocoena-

phocoena-monitoring-force-test-site-canada  

 

Observation Program 
FORCE’s marine mammal observation program in 2022 includes observations made during bi-

weekly shoreline surveys, stationary observations at the FORCE Visitor Centre, and marine-

https://tethys.pnnl.gov/stories/harbor-porpoise-phocoena-phocoena-monitoring-force-test-site-canada
https://tethys.pnnl.gov/stories/harbor-porpoise-phocoena-phocoena-monitoring-force-test-site-canada
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based observations during marine operations. All observations and sightings are recorded, along 

with weather data, tide state, and other environmental data. Any marine mammal observations 

will be shared with SMRU Consulting to support validation efforts of PAM activities when C-PODs 

are deployed. 

FORCE uses an Unmanned Aerial Vehicle (UAV) for collecting observational data along the 
shoreline and over the FORCE site using transects by programming GPS waypoints in the UAV 
to standardize flight paths. FORCE staff received training to operate FORCE’s UAV and have 
acquired UAV pilot certification by successfully passing the 2019 Canadian Drone Pilot Basic 
Operations Examination, administered by Transport Canada. These staff are now licensed to 
safely operate the UAV at the FORCE site. FORCE also hosts a public reporting tool that allows 
members of the public to report observations of marine life: mmo.fundyforce.ca  

 

Marine Sound (Acoustics) 
Marine sound – often referred to as ‘acoustics’ or ‘noise’ – monitoring efforts are designed to 
characterize the soundscape of the FORCE test site. Data collected from these monitoring efforts 
will be used to test the EA predictions that operational sounds produced from functioning tidal 
stream energy devices are unlikely to cause mortality, physical injury or hearing impairment to 
marine animals (AECOM 2009). 

Results from previous acoustic analyses completed at the FORCE site indicate that the CSTV 
turbine was audible to marine life at varying distances from the turbine, but only exceeded the 
threshold for behavioural disturbance at very short ranges and during particular tide conditions 
(Martin et al. 2018). This is consistent with findings at the Paimpol-Bréhat site in France where an 
OpenHydro turbine was also deployed – data suggests that physiological trauma associated with 
a device is improbable, but that behavioural disturbance may occur within 400 m of a device for 
marine mammals and at closer distances for some fish species (Lossent et al. 2018).  

In previous years, regulators have encouraged FORCE to pursue integration of results from 
multiple PAM instruments deployed in and around the FORCE test site. To that end, FORCE, and 
its partner JASCO Applied Sciences (Canada) Ltd. pursued a comparative integrated analysis of 
sound data collected by various hydrophones (i.e., underwater sound recorders) deployed 
autonomously and mounted on the CSTV turbine. That work revealed that flow noise increased 
with the height of the hydrophone off the seabed but had little effect on hydrophones deployed 
closer to the sea floor. The comparative integrated analysis provided valuable information about 
future marine sound monitoring technologies and protocols while building on previous acoustics 
analyses at the FORCE site. 

In its 2021-2023 EEMP proposal, FORCE has recommended conducting a test survey in the 
presence of an operational device using an internationally recognized standard methodology for 
monitoring sound (International Electrotechnical Commission 2019). This would permit the 
feasibility of the approach to be tested in the Minas Passage to ensure the method can be 
implemented as described. This work is pending an operational device being deployed at the 
FORCE tidal demonstration area. FORCE will work with JASCO to collect and analyze marine 
sound data once a device is deployed.  

 

https://mmo.fundyforce.ca/
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Seabirds 
FORCE’s seabird monitoring program is designed to test the EA prediction that project activities 
are not likely to cause adverse residual effects on marine birds within the FORCE test area 
(AECOM 2009). However, there has been limited opportunity to determine potential effects of an 
operational device on seabirds at the FORCE test site and to test the EA predictions. 

Since 2011, FORCE and Envirosphere Consultants Ltd. (Windsor, NS) have collected 
observational data from the deck of the FORCE Visitor Centre, documenting seabird species 
presence, distribution, behaviour, and seasonality throughout the FORCE site (Envirosphere 
Consultants Ltd. 2017). Envirosphere Consultants Ltd. recently published the results of their 
monitoring from 2010-2012 and demonstrated that the species and seasonal cycles of seabirds 
in Minas Passage reflect patterns that are typical of the inner Bay of Fundy and the northeast 
Atlantic coast of North American. The report also highlights the importance of the Minas Passage 
as a migratory pathway for black scoter (Melanitta americana) and Red-throated loon (Gavia 
stellata). 

In 2019, FORCE commissioned Envirosphere Consultants Ltd. and Dr. Phil Taylor (Acadia 
University) to synthesize the results of its observational seabird surveys (2011-2018) at the 
FORCE test site, and to evaluate advanced statistical techniques for analysing seabird count data 
in relation to environmental predictor variables. The seabird count data were examined using 
Generalized Additive Models (GAMs) to characterize seabird abundance and to better understand 
the potential impacts of tidal stream energy devices on seabirds at the FORCE test site. The 
results of the analyses revealed that overall model fit is suitable to characterize count data for 
some species, and that there are clear patterns of effects of time of year, wind speed and 
direction, tide height and time of day on the number of seabirds observed. However, the analyses 
also revealed that not all species reported at FORCE have been observed frequently enough to 
be modelled effectively using the GAM approach. This is due in part to the variability in count data 
that is particularly relevant for modelling abundance of migratory species that are only present at 
the FORCE site for brief periods during annual migrations. This is consistent with observational 
data collected over the course of these surveys that have demonstrated that the FORCE site has 
a lower abundance of seabirds in relation to other areas of the Bay of Fundy, and even other 
regions of Atlantic Canada. Given these results, the report recommends that future monitoring 
and analyses focus on locally resident species (i.e., great black-backed gull, herring gull, black 
guillemot, and common eider) so that the EA predictions can be tested most effectively. This work 
contributes to the development of appropriate analytical methods for assessing the impacts of 
tidal power development in the Minas Passage on relevant seabird populations and supports the 
continued responsible development of tidal energy at FORCE.  

In 2022 FORCE began working with Strum Consulting to test radar-based seabird monitoring 
capabilities and to adapt existing data processing algorithms and statistical analysis tools for 
quantifying seabird use of the FORCE site. Strum has provided a technical report which highlights 
challenges and options to move forward with this approach. Challenges with the quality of the 
radar data limited the assessment and the full study could not be completed. This feasibility study 
will continue in 2023 with FORCE providing a new data set to Strum to work through some of the 
challenges in locating avian targets.  
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Developer Monitoring Activities 
While FORCE completes site-level monitoring activities at the FORCE site, device specific 
monitoring is led by individual berth holders. Like the FORCE monitoring programs, the developer 
monitoring plans and reports undergo review by FORCE’s EMAC and regulators. 

In September 2018, it was confirmed that that CSTV turbine rotor was not spinning. Since that 
time, CSTV had been providing written confirmation to regulators monthly that the turbine is not 
operational by monitoring its status during the peak tidal flow of each month. However, because 
of the insolvency of OpenHydro Technology Ltd., all reporting activities by CSTV ceased as of 
March 1, 2019. Data collection from the turbine-mounted ADCPs to confirm the turbine is no 
longer spinning was managed and reported by FORCE to regulators monthly from March 2019 – 
May 2020 but was discontinued following an amendment to this requirement. 

As additional developer, device-specific environmental effects monitoring programs are required 
and implemented for deployed tidal stream devices, berth holder updates will be included as 
appendices to future reports. 

 

Other FORCE Research Activities 

Risk Assessment Program 
The Risk Assessment Program (RAP) for tidal stream energy is a collaborative effort between 
FORCE, academic partners, First Nations, and industry to advance our understanding of the 
environmental risks of tidal stream development in Minas Passage. The greatest potential risk of 
tidal stream energy device operations continues to be perceived by regulators and stakeholders 
as collisions between marine animals and turbine blades (Copping and Hemery 2020). However, 
these types of interactions are difficult to observe directly due to the environmental conditions 
under which they would occur (i.e., fast flowing, turbid waters) and using the suite of 
environmental monitoring instrumentation currently available (i.e., standard oceanographic and 
remote sensing instruments intended for use in more benign marine conditions) (Hasselman et 
al. 2020), but can be modeled using appropriate baseline data. The objective of the RAP program 
is to develop statistically robust encounter rate models for migratory and resident fishes with tidal 
stream energy devices in the Bay of Fundy using a combination of physical oceanographic data 
related to flow and turbulence in the Minas Passage and hydroacoustic tagging data for various 
fish species curated by the Ocean Tracking Network (OTN) at Dalhousie University. 

Recent research has revealed how hydrodynamics (flow and turbulence-related features) in tidal 
stream environments can influence the distribution of marine animals, including fish (Lieber et al. 
2018, 2019; McInturf et al. 2019). The Minas Passage is characterized by a series of turbulent 
hydrodynamics features (i.e., vortices, eddies, whirlpools, wakes, and shear currents) that could 
impact the spatiotemporal distribution of various fishes. The RAP will use a series of ADCP data 
collection efforts combined with a high-resolution radar network to create the first spatiotemporal 
flow atlas of the Minas Passage to understand these hydrodynamic features. Two Nortek 
Signature 500 autonomous ADCP’s (Figure 2) were deployed in the tidal demonstration area on 
January 27th. One of the ADCP’s was successfully recovered on May 4th however, the second 
unit could not be recovered due to an unforeseen issue with the acoustic release recovery 
mechanism. Further attempts to recover the unit were made this summer but unfortunately the 
unit could not be recovered. In lieu of the data from the missing ADCP, data from a previous study 
was used as a replacement. Concurrently, hydroacoustic data for various migratory and resident 
fish species in the Bay of Fundy that is curated by OTN will be compiled and analysed to 
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understand their spatiotemporal distributions. The hydrodynamic and hydroacoustic data will then 
be combined with information about device specific parameters (e.g., turbine blade length, swept 
area, turbine height off the seabed) to develop encounter rate models for various fish species. 
These models will then be refined and validated through a series of hydroacoustic tagging efforts, 
ultimately leading to the development of a user-friendly Graphical User Interface (GUI) similar to 
what is available for the offshore wind energy industry in the United Kingdom (McGregor et al. 
2018). Ultimately, the RAP will contribute towards improving our understanding of the risks of tidal 
stream energy development for fishes of commercial, cultural, and conservation importance in the 
Bay of Fundy, and will assist in the development of future environmental effects monitoring 
programs. 

 

Figure 2: Two Nortek Signature 500 autonomous ADCP’s fitted in aluminum frames during 
deployment at the FORCE tidal demonstration area.  

Since the program commenced in April 2020, OTN has acquired acoustic tag data from 22 
contributors, covering nine species of fish in the Bay of Fundy (i.e., alewife (Alosa 
pseudoharengus), American shad (A. sapidissima), American eel (Anguilla rostrata), Atlantic 
salmon (Salmo salar), Atlantic sturgeon (Acipenser oxyrhinchus oxyrhinchus), Atlantic tomcod 
(Microgadus tomcod), spiny dogfish (Squalus acanthias), striped bass (Morone saxatilis), and 
white shark (Carcharodon carcharias)). FORCE has also established a high-resolution radar 
network in Minas Passage and has begun quantifying hydrodynamic features (turbulence, flow 
etc.) of Minas passage (Figure 3). The integration of physical habitat variables with acoustic tag 
data commenced in 2021, including the development of species distribution models for each 
species and species distribution maps. This work continues in 2022 with additional tagging 
currently underway to further validate model predictions. In collaboration with the Mi’kmaw 
Conservation Group (MCG) (Figure 4) fish tagging has been completed on 25 Atlantic salmon 
smolts, 24 American shad, 50 alewives, 4 Atlantic Sturgeon, and 15 spiny dogfish. The Atlantic 
Salmon smolts were tagged by DFO Science as their contribution to the project. Shad and alewife 
tags were purchased by FORCE berth holder Sustainable Marine as part of their contribution to 
RAP.  
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The acoustic receiver array (Figure 5) for detecting tagged fish was deployed in 2021 between 
early June and late August and again from September to early December. Due to the dynamic 
nature of the Minas Passage the equipment required extensive repairs which has delayed 
redeployment of the array. This time was used to reassess the positioning of acoustic receivers 
on the mooring/SUBs packages and develop a more streamlined design to alleviate extensive 
drag and reduce damage (Figure 6). The array was redeployed in May 2022 with the new design 
configuration and was recovered in early September. The data sets from the receivers have been 
downloaded and are being used to improve the models that the program has developed. The new 
design configuration of the acoustic receivers on the SUBs packages appears to be working well 
as minimal damage was noted following this deployment of the receiver line.     

The first peer reviewed published research to come out of the RAP project is now publicly 
available (Bangley et al. (2022), Appendix IV) and is an important milestone for the project by 
demonstrating the potential utility of species distribution modelling of acoustic tag detections in 
predicting interactions with renewable energy devices. The report also showed the importance of 
physical oceanographic variables in influencing species distribution in a highly dynamic marine 
environment. The results of the study suggest that during fall (October-December) striped bass 
in Minas Passage are more likely to be associated with warmer water temperatures, very simple 
or very complex seafloor types and turbulent water conditions that are associated with ebbing 
tides. When mapped out, higher probabilities of striped bass presence occurred mostly in 
nearshore environments and were most widespread during the late ebb tide stage. 

 

Figure 3: One of two high-resolution radars constructed near the FORCE site to be used for the 
Risk Assessment Program. 

 

https://www.frontiersin.org/articles/10.3389/fmars.2022.851757/full
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Figure 4: Acoustic tagging of spiny dogfish from the Minas Basin by RAP partner organization 
Mi’kmaw Conservation Group in 2022. 

 

 

Figure 5: Acoustic receiver array deployment configuration in Minas Passage. 
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Figure 6: New positioning of acoustic receivers and release mechanism on a SUB package. 

 

Fundy Advanced Sensor Technology (FAST) Activities  
FORCE’s Fundy Advanced Sensor Technology Program is designed to advance capabilities to 
monitor and characterize the FORCE site. Specifically, the FAST Program was designed to 
achieve the following objectives: 

1) To advance capabilities of site characterization; 
2) To develop and refine environmental monitoring standards and technologies; and 
3) To enhance marine operating methodologies. 

FAST combines both onshore and offshore monitoring assets. Onshore assets include a 
meteorological station, video cameras, an X-band radar system, and tide gauge. Offshore assets 
include modular subsea platforms for both autonomous and cabled data collection and a suite of 
instrumentation for a variety of research purposes. Real-time data collected through FAST assets 
will be broadcasted through the Canadian Integrated Ocean Observing System (CIOOS) later this 
year. Static ADCP data is currently available on the CIOOS website.23 

 

Platform Projects 
The first and largest of the FAST platforms houses an instrument called the Vectron. Developed 
in partnership with Nortek Scientific (Halifax, NS), Memorial University (St. John’s, NL), and 
Dalhousie University (Halifax, NS), the Vectron is the world’s first stand-alone instrument to 
remotely measure, in high resolution, turbulence in the mid-water column. Measurements and 
analysis from the Vectron will help tidal energy companies to better design devices, plan marine 
operations, and characterize the tidal energy resource. 

A smaller platform called FAST-3 was equipped with an upward looking echosounder and 
deployed during 2017-2018 to monitor fish densities at the FORCE site. FORCE and its partners, 
including Echoview Software completed data processing and analysis in 2019. This data was 
integrated with the mobile hydroacoustic surveys that FORCE conducts as part of its EEMP to 
evaluate the temporal and spatial representativeness of each method and to determine the 

 
23 This is available online at: https://catalogue.cioosatlantic.ca/dataset/ca-cioos_db15458d-df2c-4efb-b5a0-
791e7561a0cb   

https://catalogue.cioosatlantic.ca/dataset/ca-cioos_db15458d-df2c-4efb-b5a0-791e7561a0cb
https://catalogue.cioosatlantic.ca/dataset/ca-cioos_db15458d-df2c-4efb-b5a0-791e7561a0cb
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degree to which results were corroborative (Figure 7). Although the 
spatial representative range of the stationary results could not be 
determined from the mobile data, it did reveal strong tidal and diel 
periods in fish density estimates at the site, with greater variation 
over shorter time frames than over the course of a year. These 
findings reinforce the importance of 24-hr data collection periods in 
ongoing monitoring efforts. The report reveals that collecting 24 
hours of data allows the tidal and diel variability to be quantified and 
isolated from the longer-term trends in fish density and distribution 
that need to be monitored for testing the EA predictions. This project 
was funded by Natural Resources Canada (NRCan), the NSDEM, 
and Net Zero Atlantic (formally OERA). 

 

Vitality Project 
FORCE is actively participating in a new research and development 

program called the VITALITY Innovation Ecosystem Activity Project 

that is focused on integrating tidal stream data from the FORCE test 

site into CIOOS. CIOOS is a national online digital platform for 

sharing, discovering, and accessing ocean data in Canada, and data that is integrated into CIOOS 

is visible regionally and nationally. FORCE’s component of the VITALITY project has three 

primary objectives: 

1. Integration of FORCE’s resource characterization and relevant environmental monitoring 

data (real time and static) into CIOOS to support better data accessibility and preservation, 

2. Incorporation of industry and other stakeholder’s data into CIOOS (i.e., industry use case), 

and 

3. Installation and commissioning of a cabled subsea node at the FORCE site with applied 

R&D sensors whose real-time data will be integrated into CIOOS. 

To that end, FORCE and its project partner Dalhousie University have recently developed a 

cabled subsea platform that includes an ADCP for measuring tidal current flow, waves and water 

temperature, a video camera for providing live stream video, and an array of hydrophones for 

testing the real-time detection of harbour porpoise. The platform underwent a deployment in the 

intertidal zone near the FORCE test site for initial testing this spring which was deemed a success. 

(Figure 8). Once the intertidal testing was completed, the platform was recovered from the 

intertidal zone and re-deployed in closer proximity to the FORCE site to test capabilities in the 

dynamic tidal conditions of the Minas Passage. This deployment took place on May 25th and the 

platform successfully streamed live data back to the FORCE visitor centre. On August 10th 

communication with the platform was interrupted and all efforts to re-establish a communication 

link failed.  

To diagnose the cause of the communication failure, the platform was recovered on October 17th. 

Post recovery testing determined that the failure was caused by corrosion of one of the platform 

grounding electrical cables. The likelihood of corrosion increases in a high flow environment like 

Minas Passage, and we are currently discussing design adjustments to address this issue going 

forward. All other components continued to function as expected and had the electrical cabling 

not corroded, the system could potentially have remained deployed long term. A long-term 

platform monitoring system would be an asset to FORCE and our berth holders in the future.  

Figure 7: A representation of the data 
collection methods of the FORCE site-
level fish EEMP and the FAST-3 
platform. 
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During its deployment, the Vitality platform successfully acquired 75 days of real-time acoustic 

doppler current profiler (ADCP) data which gathers ocean current, wave, and temperature data 

that is vital for our environmental monitoring program and technology developers. The platform 

also collected data from a hydrophone array that was configured in conjunction with Dalhousie 

University to gather harbour porpoise localization data. This data helps contribute to our 

benchmark environmental monitoring program so that we can better understand the marine 

mammal population at the FORCE site. Lastly, the platform also had a standard definition 

underwater video camera and LED light with a live feed back to our visitor centre where guests 

and staff could view the offshore underwater environment in real time. The deployment of the 

camera was a successful test to see if we could get a feed of underwater life and future 

deployments will save the video files to contribute to our catalogue of local fish in the area.  

   

 

Figure 8: The cabled subsea platform developed for the VITALITY project just prior to deployment 

at the FORCE test site. 

Video of the VITALITY platform being deployed at the FORCE Test Site: 

https://vimeo.com/718028837  

 

Fish Tracking 
To enhance fish monitoring and to expand its data collection capacity, FORCE partnered with the 
Ocean Tracking Network (OTN)24 and attached one VEMCO25 fish tag receiver (a VR2W receiver) 
to each C-POD mooring/SUBS (Streamlined Underwater Buoyancy System) package (see 
above). These receivers are used to supplement OTN’s ongoing data collection program within 

 
24 Ocean Tracking Network’s website: www.oceantrackingnetwork.org. 
25 VEMCO is “the world leader in the design and manufacture of acoustic telemetry equipment used by researchers 
worldwide to study behaviour and migration patterns of a wide variety of aquatic animals.” Learn more: 
www.vemco.com. 

https://vimeo.com/718028837
http://www.oceantrackingnetwork.org/
http://www.vemco.com/
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the Minas Passage and are referred to as ‘Buoys of Opportunity.’ Upon retrieval of the C-PODs 
and receivers, instruments are shared with OTN where data is offloaded prior to redeployment. 
This effort will support increased knowledge of fish movement within the Minas Passage, which 
has applicability beyond tidal energy demonstration, as well as complement FORCE’s 
hydroacoustic data collection efforts that do not allow for species identification. No C-POD 
mooring/SUBS have been deployed since 2020, however ongoing data collection for fish 
monitoring is occurring through the RAP acoustic receiver line.  

OTN data managers are in the process of acquiring information, including species identification, 
and sharing this with FORCE. Initial results show that the OTN receivers deployed by FORCE 
have detected tags from the following projects: 

● Maritimes Region Atlantic salmon marine survival and migration (Hardie, D.C., 2017); 
● Quebec MDDEFP Atlantic Sturgeon Tagging (Verreault, G., Dussureault, J., 2013); 
● Gulf of Maine Sturgeon (Zydlewski, G., Wippelhauser, G. Sulikowski, J., Kieffer, M., 

Kinnison, M., 2006); 
● OTN Canada Atlantic Sturgeon Tracking (Dadswell, M., Litvak, M., Stokesbury, M., 

Bradford, R., Karsten, R., Redden, A., Sheng, J., Smith, P.C., 2010);  
● Darren Porter Bay of Fundy Weir Fishing (Porter, D., Whoriskey, F., 2017); 
● Movement patterns of American lobsters in the Minas Basin, Minas Passage, and Bay of 

Fundy Canada (2017); 
● Shubenacadie River Monitoring Project: Tomcod (Marshall, J., Fleming, C., Hunt, A., and 

Beland, J., 2017); 
● MA Marine Fisheries Shark Research Program (Skomal, G.B., Chisholm, J., 2009); 
● UNB Atlantic Sturgeon and Striped Bass tracking (Curry, A., Linnansaari, T., Gautreau, 

M., 2010); 
● Inner Bay of Fundy Striped Bass (Bradford, R., LeBlanc, P., 2012); 
● Minas Basin Salmon Kelt (McLean, M., Hardie, D., Reader, J., Stokesbury, M.J.W., 2019); 
● New York Juvenile White Shark Study (Tobey Curtis); and 
● Massachusetts White Shark Research Program (Greg Skomal) 

 
Further information about these Buoys of Opportunity, and the projects listed above, can be found 
on OTN’s website: https://members.oceantrack.org/project?ccode=BOOFORCE 

Starting in 2018, FORCE has worked in collaboration with Dr. Mike Stokesbury at Acadia 
University to install additional VEMCO receivers of a new design on FORCE’s C-POD 
moorings/SUBS packages. These new receivers are expected to be even more effective in 
picking up acoustic detections in high flow environments, where tag signals can be obscured by 
noise. This partnership will contribute additional information regarding movement patterns of 
Atlantic salmon, sturgeon, striped bass, and alewife in Minas Passage and Basin. This work is 
sponsored by the OERA, NRCan, NSDEM, the Natural Sciences and Engineering Research 
Council of Canada (NSERC), and the Canadian Foundation for Innovation (CFI).26   

 
26 Information about this project, and others funded through this program, is available online at: 

https://netzeroatlantic.ca/sites/default/files/2020-04/2020-04-09%20NRCan%20Public%20Report%20Final%20-
%20Resize.pdf  
 

https://members.oceantrack.org/project?ccode=BOOFORCE
https://netzeroatlantic.ca/sites/default/files/2020-04/2020-04-09%20NRCan%20Public%20Report%20Final%20-%20Resize.pdf
https://netzeroatlantic.ca/sites/default/files/2020-04/2020-04-09%20NRCan%20Public%20Report%20Final%20-%20Resize.pdf
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Discussion 
The 2021-2023 EEMP has provided a strategic opportunity for FORCE and its partners to learn 

from previous experiences, incorporate regulatory advice, and to re-evaluate approaches to 

research and monitoring in the high flows of the Minas Passage. The EEMP is designed to 

prepare for effects testing with the deployment of operational devices and adheres to the 

principles of adaptive management by evaluating existing datasets to ensure appropriate 

monitoring approaches are being implemented. Moreover, the plan adopts internationally 

accepted standards for monitoring where possible, including feasibility assessments for new 

monitoring approaches that are planned to be implemented. 

FORCE invested in the development of its internal scientific capacity by hiring a PhD level 

hydroacoustician (Dr. Louise McGarry). This assisted FORCE with tackling data that required 

processing, analyses, and integration with other data sets. Dr. McGarry also assisted with the 

development of study designs to help advance our understanding of how fish utilize the Minas 

Passage. FORCE assisted in knowledge transfer to ASL Environmental (Victoria, BC) about 

hydroacoustics research in high flow environments so that ASL can be used as a resource to help 

support the sector in the future.  

While the 2020 COVID19 outbreak initially impacted our ability to gather data at our site and 

conduct marine operations – all of which require multiple people working in close proximity – our 

operations and monitoring data collection activities have resumed. As such, FORCE and its 

partners have resumed conducting monitoring, engaging in meaningful assessments of 

monitoring technology capabilities, and providing data analyses and interpretation that advance 

our ability to effectively monitor the effects of tidal stream energy devices in high flow 

environments, and specifically at the FORCE test site. Reports from FORCE’s partners and 

updates are routinely subjected to review by FORCE’s EMAC and regulators, along with 

continued results from FORCE’s ongoing monitoring efforts. 

FORCE continues to implement lessons learned from the experiences of local and international 

partners, build local capacity, and enhance skills development, test new sensor capabilities, and 

integrate results from various instruments. Cumulatively, these efforts provide an opportunity for 

adaptive management and the advancement and refinement of scientific approaches, tools, and 

techniques required for effectively monitoring the device and site-level areas of tidal stream 

energy devices in dynamic, high-flow marine environments. 

Ongoing monitoring efforts will continue to build on the present body of knowledge of marine life-

device interactions. While it is still early to draw conclusions, initial findings internationally and at 

the FORCE test site have documented some disturbance of marine mammals primarily during 

marine operations associated with device installation/removal activities, but otherwise have not 

observed significant effects. 

FORCE will continue to conduct environmental research and monitoring to increase our 
understanding of the natural conditions within the Minas Passage and, when the next device(s) 
are deployed and operating, test the EA prediction that tidal energy is unlikely to cause significant 
harm to marine life. In the longer-term, monitoring will need to be conducted over the full seasonal 
cycle and in association with multiple different device technologies to understand if tidal energy 
can be a safe and responsibly produced energy source. FORCE will continue to report on 
progress and release results and lessons learned in keeping with its mandate to inform decisions 
regarding future tidal energy projects.  
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Acronyms 
 

AAM  Active Acoustic Monitoring  
ADCP  Acoustic Doppler Current Profiler 
AMAR  Autonomous Multichannel Acoustic Recorder 
BACI  Before/After, Control/Impact  
BC  British Columbia 
BoFEP  Bay of Fundy Ecosystem Partnership 
CFI  Canadian Foundation for Innovation 
CIOOS  Canadian Integrated Ocean Observing System 
CLA  Crown Lease Area 
cm  Centimetre(s) 
CPUE  Catch Per Unit Effort 
CSTV  Cape Sharp Tidal Venture 
DFO  Department of Fisheries and Oceans (Canada) 
DEM  Department of Energy and Mines (Nova Scotia) 
EA  Environmental Assessment 
EEMP  Environmental Effects Monitoring Program 
EMAC  Environmental Monitoring Advisory Committee 
EMP  Environmental Management Plan 
FAD  Fish Aggregation Device 
FAST  Fundy Advanced Sensor Technology 
FAST-EMS Fundy Advanced Sensor Technology – Environmental Monitoring System 
FERN  Fundy Energy Research Network  
FORCE Fundy Ocean Research Center for Energy 
GPS   Global Positioning System 
hr  Hour(s) 
IEA  International Energy Agency 
kg  Kilogram(s) 
km  Kilometre(s) 
kW  Kilowatt(s) 
m   Metre(s) 
MET  Meteorological 
MRE  Marine Renewable Energy 
MREA  Marine Renewable-electricity Area 
NL   Newfoundland and Labrador 
NRCan Natural Resources Canada 
NS   Nova Scotia 
NSDEM  Nova Scotia Department of Energy and Mines 
NSE  Nova Scotia Department of Environment 
NSERC Natural Sciences and Engineering Research Council 
NSPI  Nova Scotia Power Inc. 
OERA  Offshore Energy Research Association of Nova Scotia 
OES  Ocean Energy Systems 
ONC  Ocean Networks Canada 
ORJIP  Offshore Renewables Joint Industry Programme 
OSC  Ocean Supercluster 
OTN  Ocean Tracking Network 
PAM  Passive Acoustic Monitoring 
Q1/2/3  Quarter (1, 2, 3), based on a quarterly reporting schedule 



 
 

R&D  Research and Development 
TC114  Technical Committee 114 
SUBS  Streamlined Underwater Buoyancy System 
SME  Sustainable Marine Energy (Canada) 
UAV  Unmanned Aerial Vehicle  
UK  United Kingdom 
VEC(s)  Valuable Ecosystem Component(s) 
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Active acoustic instruments (echosounders) are well-suited for collecting high-resolution
information on fish abundance and distribution in the areas targeted for tidal energy
development, which is necessary for understanding the potential risks tidal energy devices
pose to fish. However, a large proportion of echosounder data must often be omitted due
to high levels of backscatter from air entrained into the water column. To effectively use
these instruments at tidal energy sites, we need a better understanding of this data loss
and how it may affect estimates of fish abundance and vertical distribution. We examined
entrained air contamination in echosounder data from the Fundy Ocean Research Center
for Energy (FORCE) tidal energy test site in Minas Passage, Nova Scotia, where current
speeds can exceed 5 m·s-1. Entrained air depth was highly variable and increased with
current speed, and contamination was lowest during neap tides. The lower 70% of the
water column and current speeds <3m·s-1 were generally well-represented in the dataset.
However, under-sampling of the upper water column and faster speeds strongly affected
simulated fish abundance estimates, with error highly dependent on the underlying vertical
distribution of fish. Complementary sensing technologies, such as acoustic telemetry and
optical instruments, could be used concurrently with echosounders to fill gaps in active
acoustic datasets and to maximize what can be learned about fish abundance and
distribution at tidal energy sites.

Keywords: active acoustics, hydroacoustics, fish, entrained air, data quality, marine renewable energy, tidal
energy, MHK
1 INTRODUCTION

The tidal energy sector is a nascent industry, and the potential environmental effects of marine
hydrokinetic (MHK) devices on fish continues to be an area of concern for regulators and stakeholders
of the marine environment (Copping et al., 2021). Predicting fish interactions with MHK devices, and
therefore potential device effects, requires information on fish presence, abundance, and distribution
at a resolution and scale that is rarely required elsewhere. Spatial resolution must be on the order of
meters for data to be related to an individual MHK device, and collected throughout the water column
and/or across tidal channels that can be kilometers wide. Similarly, fine temporal resolution (seconds
to minutes) may be required to capture shifts in fish distribution that affect MHK device encounter
in.org March 2022 | Volume 9 | Article 8514001
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rates but years of observations may be needed to characterize
seasonal patterns and longer-term population shifts. Active
acoustic instruments are excellent tools for collecting this high-
resolution information across large spaces and periods of time.
This technology includes single beam, split beam, and multibeam
echosounders utilizing single or multiple frequencies in narrow- or
broad-band modes (Demer et al., 2015). Active acoustics is a vital
component of fisheries stock assessments worldwide, given these
instruments’ unequaled capacity to rapidly and non-invasively
sample large volumes of water (Horne, 2000; Simmonds and
MacLennan, 2005). Echosounders have been employed in
studies of fish at tidal energy sites around the world, as well (e.g.
Viehman et al., 2015; Fraser et al., 2017; Viehman et al., 2018;
Gonzalez et al., 2019; Williamson et al., 2019; Scherelis et al., 2020;
Whitton et al., 2020).

Tidal channels are characterized by fast currents and complex
hydrodynamics that pose unique challenges to active acoustics
technology, which can hamper the translation of raw data to
information that can be used by scientists, developers, and
regulators of the tidal energy industry. The primary challenge is
the high prevalence of air bubbles entrained into the water column,
which scatter the sound transmitted by echosounders. Air
entrainment is a common occurrence in the open ocean, with the
primary source of entrainment being breaking waves (Woolf, 2001;
Baschek et al., 2006). Air plumes in the open ocean commonly extend
to depths of 10-15 m, but the extreme hydrodynamic conditions in
areas with strong tidal currents can draw bubbles to depths well over
100 m (Baschek et al., 2006). Though bubbles entrained in the water
column tend to be very small (e.g. < 1 mm diameter; Woolf, 2001;
Baschek et al., 2006), they are strong scatterers of sound. The sound
scattered by clouds of bubbles observed at tidal energy sites is similar
to, or stronger than, that scattered by fish (for example, in the 120
kHz data assessed here, volume backscatter of the entrained air layer
averaged -46 dB re 1 m2m-3), and the two scatterer types cannot be
separated in active acoustics data if they inhabit the same volume of
water. Measurements containing backscatter from entrained air must
therefore be removed from acoustic datasets prior to analyzing
backscatter from fish.

Studies at tidal energy sites have utilized different methods to
remove backscatter from entrained air. The majority of methods
exploit the distinct temporal and/or morphological characteristics
of the bubble plumes to differentiate them from fish backscatter,
including occurrence and duration in time and surface
connectivity (Fraser et al., 2017; Scherelis et al., 2020). Features
with the designated characteristics are then removed from the
dataset, either manually or with some mix of automated and
manual steps. Removal has included omitting just the
contaminated data points (Fraser et al., 2017; Whitton et al.,
2020), or a fixed depth range plus the entire water column when
air extends further (Viehman et al., 2018). Other studies have kept
only the lowermost portion of the water column as the depths of
primary interest, ignoring the upper layers (Viehman et al., 2015;
Gonzalez et al., 2019). Regardless of the method, the result is
omitting a large amount of water that could contain fish but is
unable to be effectively sampled by active acoustics instruments.

Omitting the entrained air layer is likely to affect acoustically
derived estimates offish abundance and vertical distribution, and
Frontiers in Marine Science | www.frontiersin.org 2
therefore our ability to estimate encounters with MHK devices.
Moreover, it is possible that different fish species’ or life stages’
contributions to acoustic measurements will be unequally
affected by removing different portions of the water column,
given depth preferences that are often species- or life-stage-
specific. For example, in the northwest Atlantic, Atlantic salmon
post-smolts and adults (Salmo salar) tend to be found within the
upper 10 m of the water column (Dutil and Coutu, 1988;
Sheehan et al., 2012). Other species utilize the entire water
column more generally (e.g. Atlantic herring, Clupea harengus,
Huse et al., 2012; Viehman et al., 2018; Atlantic mackerel,
Scombur scombrus, Castonguay and Gilbert 1995), while others
are typically associated with the bottom (e.g. Atlantic cod, Gadus
morhua, Hobson et al., 2007). American eel (Anguila rostrata)
have exhibited distinct vertical migrations to take advantage of
favorable tidal currents, a behavior known as selective tidal
stream transport (STST; Parker and McCleave, 1997). At
present, it is unclear whether depth preferences observed in
lower-energy environments will persist within highly energetic
tidal channels, and there is some evidence that they may differ
(Stokesbury et al., 2016; Lilly et al., 2021).

Though data contamination by entrained air is an issue at all
tidal energy sites, we have yet to examine the resulting data loss
in detail (e.g. its magnitude and spatiotemporal distribution), or
how this loss could affect our acoustically derived estimates of
fish abundance and vertical distribution. This information would
be particularly helpful in the planning stages of a study or
environmental monitoring plan, when steps can be taken to
address any expected limitations of the active acoustic dataset.
These steps may include, for example, the simultaneous use of
complementary technologies and sampling techniques.

In this paper, we examined the entrained air layer in active
acoustic data collected at the FORCE tidal energy test site. We
developed a method for identifying and removing the data points
contaminated by entrained air, quantified entrained air depth and
resulting data loss, and demonstrated the effects of this data loss on
estimates of fish abundance and vertical distribution obtained
from simulated vertical distributions of fish. The active acoustic
data assessed in this paper are from a fixed-location split beam,
narrowband, scientific-grade echosounder, which is the type most
used for assessing the abundance and vertical distribution offishes
over long periods of time or space. Our goal was to provide
researchers, developers, and regulators of the tidal energy industry
with the information they need to utilize active acoustics
technology to its fullest potential, and to mitigate the limitations
imposed on it by this exceptionally challenging environment.
2 MATERIALS AND METHODS

2.1 Data Collection
Data were collected at the Fundy Ocean Research Center for
Energy (FORCE) tidal energy test site, in the Bay of Fundy, Nova
Scotia, Canada (Figure 1). Instruments were installed on the
Fundy Advanced Sensor Technology subsea platform, FAST-3
(Figure 2). This stationary platform was deployed on the seafloor
March 2022 | Volume 9 | Article 851400
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at 45°21’47.34” N, 64°25’38.88” W, and was in place for 53 days
from 30 March to 23 May 2018. At this location, water column
depth averaged 33 m at low tide and 43 m at high tide.

Active acoustic data were collected by a Simrad EK80 WBAT
echosounder with a 120 kHz split beam transducer (7° half-
power beam angle), located 0.7 m above the seafloor and facing
upward. Data were collected in 5-min recording periods every
half hour, with a ping rate of 1 Hz, pulse duration of 0.128 ms,
transmit power of 125 W, and maximum recording range of
60 m. Collection settings were chosen based on pilot data
collected near this site in February 2017.

Measurements of current velocity throughout the water
column were collected by a Nortek Signature 500 acoustic
Frontiers in Marine Science | www.frontiersin.org 3
doppler current profiler (ADCP). The ADCP’s face was located
at 0.7 m above the seafloor. Data were collected in 5-min bursts
every 15 min, alternating with echosounder measurements to
avoid acoustic interference between the two instruments. The
sample rate during each burst was 2 Hz, the blanking distance
was 1 m, and the cell size was 1 m.

Water temperature and salinity at the platform were
measured by an Aanderaa SeaGuard RCM every half hour.

2.2 Data Processing
2.2.1 Active Acoustic Data
Active acoustic data processing was carried out using Echoview®

software (12.1, Myriax, Hobart, Australia). We developed a data
FIGURE 1 | Study location in the Minas Passage of the Bay of Fundy, Canada. The location of Minas Passage is indicated by the filled circle in the left-hand panel,
and the study site is shown on the right.
FIGURE 2 | FAST-3 platform deployed at the FORCE Tidal energy test site from 30 Mar to 23 May 2018. Equipment included (A) Simrad WBAT EK80
echosounder, (B) Nortek Signature 500 ADCP, (C) Aanderaa SeaGuard RCM.
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processing routine in Echoview that detected the surface and
entrained air layer, minimizing the need for manual correction as
much as possible. The template developed for this process is
provided in supplementary materials with a detailed explanation
of all steps.

Briefly, the surface was detected with a line, and the boundary
of the surface dead zone was delineated below this (0.16 m below
on average; Ona and Mitson, 1996). A line was also defined at 2x
the acoustic nearfield distance from the transducer face
(Simmonds and MacLennan, 2005), and acted as the lower
analysis limit in all following steps. Entrained air was defined
morphometrically as clusters of backscatter which extended
downward from the surface, similar to Fraser et al. (2017).
Detection of these clusters required a series of separate
processing steps, including smoothing the raw volume
backscatter (SV) data, applying a minimum data threshold, and
using Echoview’s schools detection algorithm to detect
contiguous clusters of backscatter that surpassed this threshold.
Clusters which were connected to the surface were isolated and
expanded in depth and time, and a line was drawn below the
resulting backscatter to establish the lower extent of the
entrained air layer. The maximum depth of this layer was
limited by the acoustic nearfield, 2.4 m above the seafloor.

All processing steps and settings were chosen by iteratively
reviewing the performance of the processing routine on a subset
of data files that represented a wide range of entrained air
contamination, until the level of necessary manual corrections
to the surface and entrained air lines was deemed acceptably low.
All data files were then batch-processed in Echoview using the
finalized routine. The resulting Echoview files were reviewed
manually to make any necessary corrections to the surface and
entrained air lines.

Once all necessary corrections were made, the surface and
entrained air line depths were exported, and we calculated the
average water column depth and entrained air depth for each 5-
min data recording period. For each recording period, we also
calculated the number of samples (individual datapoints)
omitted due to the entrained air layer. We converted this
number to a percent of analyzable samples, which was more
comparable over time as water level changed. We defined
analyzable samples as all samples between the nearfield and
surface dead zone because samples outside of these boundaries
would always be excluded from acoustic analysis.

Echosounder data were calibrated using calibration sphere
measurements obtained at a calm location off-site, before and
after the deployment. As environmental conditions changed
significantly over the course of the deployment (temperature
and salinity shifts caused the speed of sound to increase from
1452 m·s-1 to 1477 m·s-1), acoustic data were split into sections to
which different calibration parameters were applied. Details of
data calibration are supplied in supplementary materials.

2.2.2 ADCP Data
ADCP measurements were first corrected for platform tilt and
compass declination using Ocean Contour (version 2.1.5, Ocean
Illumination Ltd., Canada). We obtained average horizontal speed
and direction for each 1-m cell of every ADCP burst. The first
Frontiers in Marine Science | www.frontiersin.org 4
measurement cell was centered 2 m from the transducer face.
Measurements from the uppermost 10% of the water column
could not be used due to interference from side lobes, so we
removed these upper cells prior to calculating water column
average speed and direction. We then interpolated these speed
and direction values in time to obtain water column averages at
the midpoint of each echosounder recording period. All future
references to current speed or direction measurements refer to
these interpolated water column averages.

Slack tide was defined as current speed < 0.5 m·s-1, which
captured the period of time when current direction was shifting
between ebb and flood. In this dataset, slack tide defined in this
way (by current speed and direction) occurred approximately 15-
30 min after the time of lowest or highest water. Spring and neap
tides were identified in the current velocity time series as maxima
and minima in peak flow speed.

2.2.3 SeaGuard RCM Data
Conductivity and temperature readings from the SeaGuard RCM
were used in the calculation of sound speed, for calibrating
echosounder data (see supplementary material).

2.3 Data Analysis
There was no way to predict how many fish were omitted from
the acoustic dataset by removing the entrained air layer. We
therefore demonstrated how entrained air contamination affects
estimates of fish abundance and distribution by constructing five
hypothetical fish distribution scenarios that we then subjected to
different levels of contamination and data removal. Analysis was
carried out in R software version 4.1.2 (R Core Team, 2021).

The five vertical distribution scenarios each spanned one tidal
cycle, which was split into 24 equally spaced time segments (tide
bins; approximately 30 min each). All recording periods from the
acoustic dataset were partitioned into these tide bins, and for
each tide bin we calculated mean water column depth and the
5th, 50th (median), and 95th percentiles of entrained air depth.
The mean water column depth from each tide bin defined the
hypothetical water column in each fish distribution scenario. The
water column was then split into 1 m depth bins to be populated
with some number of fish. For simplicity, total fish abundance
was held constant over time (1000 fish per tide bin, 24000 fish
total). The fish distribution scenarios we generated were:

1. Fish utilizing the entire water column: for each tide bin, 1000
fish were distributed randomly into all water column bins,
from the seafloor to the surface.

2. Surface-oriented fish: for each tide bin, 1000 fish were
distributed into the upper 10 bins of the water column. To
simulate a gradual increase in fish abundance towards the
surface (as observed previously; e.g. Viehman et al., 2018), fish
were assigned to depth bins following a beta distribution
which peaked in the 2-3 m depth bins.

3. Bottom-oriented fish: for each tide bin, 1000 fish were assigned
to the lowermost 10 m of the water column, using the same
method as for Scenario 2 but with fish abundance increasing
towards the sea floor and peaking in the lowermost bin.
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4. Selective tidal stream transport (STST): fish were bottom-
oriented during the flood tide (as in Scenario 3) and surface-
oriented during ebb tide (as in Scenario 2), transitioning
through the mid-water-column during slack tides. This
scenario represented STST for a species migrating outward
toward the open ocean, utilizing the current during ebb tide.

5. Mixed fish assemblage: Scenarios 1-4 were combined to
represent a mix of species exhibiting different depth
preferences and vertical movements. 50% of fish were
randomly distributed, 20% were surface-oriented, 20% were
bottom-oriented, and 10% exhibited STST. The proportions
of fish exhibiting each vertical distribution were chosen
arbitrarily for illustration purposes, as these proportions are
not yet known for fishes utilizing Minas Passage.

To simulate the effects of entrained air contamination on
acoustically-derived estimates of fish abundance, we removed
counts from any depth bins within the entrained air layer. The
5th, 50th, and 95th percentile air layer depths represented “best”,
“middle”, and “worst” contamination conditions, respectively.
We also omitted fish below the nearfield range, as that portion of
active acoustic data would not be useable either. We calculated
“observed” fish abundances as the water column sums for each
tide bin in these reduced datasets (making the assumption that
all fish would be equally detectable by the echosounder). We then
compared observed abundances to the known water column
Frontiers in Marine Science | www.frontiersin.org 5
sums (“actual” fish abundance), which was 1000 fish per tide bin.
For scenario 5, we also compared actual and observed fish

vertical distribution for each stage of the tide: low (tide bins 1 and
24), high (tide bin 13), flood (tide bins 2 to 12), and ebb (tide bins
14 to 23). The vertical distribution for each tidal stage was
constructed by breaking the water column into depth bins
which spanned 5% of the total water column height (to
account for changing water level), then summing the numbers
of fish contained within each percentage bin.
3 RESULTS

The entrained air detection method worked well, with only a
small number of files requiring manual adjustments to the
automatically detected surface and entrained air lines
(approximately 6% and 3%, respectively). Most entrained air
was easily identifiable as backscatter extending downward from
the surface, whereas most backscatter likely to be from fish did
not overlap with the surface (Figure 3).

Despite the entrained air layer detection algorithm generally
working well (Figure 4A), there were still instances where it was
difficult to differentiate backscatter from bubbles or fish based on
appearance alone. Some backscatter could have been either
aggregated fish or partial , detached bubble plumes
(Figure 4C). This ambiguous backscatter needed to be
A B

FIGURE 3 | Volume backscatter (SV) echogram from a typical flood tide (on 22 May 2018). Low tide is on the left and high tide is on the right. Vertical gridlines
separate the 5-min echosounder recording periods, which began every half hour (times shown in UTC). Horizontal gridlines indicate 10-m range bins (measured
upwards from the transducer face). All following echograms use the same grid and color scale shown here. (A) Backscatter from small aggregations of fish visible
near the surface near low tide. (B) Bubble plumes extending far into the water column during the peak flow.
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classified manually based on the appearance of the surrounding
water column and neighboring recording periods. There were
also many periods where fish were evident within bubble plumes
but inseparable from plume backscatter, and therefore
omitted (Figure 4B).

Backscatter from entrained air was not always confined to
dense plumes of bubbles. At peak current speeds, when the
plumes were most obvious, it was clear that the remaining water
column was also subject to additional backscatter that often
surpassed the same minimum threshold applied to the plumes
(Figure 5). This more dispersed backscatter was likely also
related to bubbles, given its strong association with deep
bubble plumes, and it was therefore considered to be part of
the entrained air layer. This situation is the cause of all recording
periods that were missing 100% of their analyzable samples.

The final dataset consisted of 2583 5-min recording periods.
Across all recording periods, 29% of all analyzable samples were
Frontiers in Marine Science | www.frontiersin.org 6
removed due to contamination from entrained air. Entrained air
depth varied greatly over time, from the surface to the nearfield-
exclusion line (Figure 6B). Consequently, the percentage of
analyzable samples that would be omitted from any given
recording period also varied from near 0% up to 100%
(Figure 6C). Overall, 4% of recording periods were missing all
of their analyzable samples, 16% were missing at least half of
their samples, and 41% were missing at least a quarter. Almost all
recording periods missing 100% of their samples occurred
during peak flow near spring tides, when current speeds were
highest (Figures 6A, C, orange bars). During neap tides, data loss
in a given recording period did not often exceed 50% (Figure 6C,
purple bars).

Due to entrained air extending downward from the surface, the
lower water column was sampled more consistently than the upper
water column. Across all recording periods, the uppermost 5% of
the water column was only sampled 15% of the time, whereas the
FIGURE 4 | Subset of echogram shown in (Figure 3), showing backscatter from fish and entrained air (delineated by pink line). (A) Small fish aggregations clearly
visible in upper water column, separate from entrained air layer. (B) Aggregations appear to shift upward into entrained air layer, where they can still be seen. (C)
Unclear whether backscatter is from fish aggregations or detached/dispersed bubble plumes.
FIGURE 5 | Example of backscatter from bubbles entrained throughout the water column. The detected entrained air line (pink) extends to the acoustic nearfield
(horizontal yellow line), resulting in omission of most or all of the water column.
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5% above the nearfield was sampled 93% of the time (Figure 7A).
The uppermost water column was almost exclusively sampled at
current speeds less than 2 m·s-1, and current speeds over 3 m·s-1

were only well sampled in the lower half of the water column (i.e. in
proportions similar to total recording periods, Figure 7A, upper
panel). The fastest current speeds, greater than 4 m·s-1, were very
rarely sampled without contamination from entrained air, and only
in the lower 45% of the water column.

There was a noticeable difference between depths and current
speeds sampled during spring and neap tides (Figures 7B, C). Most
current speeds greater than 3 m·s-1 occurred during spring tides
(Figure 7B, upper panel), but were not well sampled anywhere in
the water column (Figure 7B, lower panel). During spring tide,
contamination by entrained air at these faster speeds resulted in
omitting at least 20% of recording periods throughout the water
column, and more closer to the surface.

Conversely, during neap tides, the current speeds sampled in
the lowermost 75% of the water column largely reflected the
current speeds measured across all neap tide periods. Moreover,
bins in the lower 70% of the water column were contaminated
less than 10% of the time. Though surface depth bins were still
under-sampled relative to lower bins, data collected during neap
tides spanned the most representative range of current speeds for
the largest portion of the water column.

The unequal representation of current speeds across depths was
due to the correlation of entrained air depth with current speed
(Figure 8A). Higher current speeds resulted in greater air
contamination and data loss. The highest current speeds recorded
Frontiers in Marine Science | www.frontiersin.org 7
during either flood or ebb tide (occurring near spring tides) were
often correlated with 100% contaminated samples (Figure 8B),
though peak speeds were lower during ebb than flood (Figure 9C).
The recording periods missing all or nearly all samples were mainly
due to the “dispersed” bubble backscatter shown in Figure 5.

The correlation of entrained air depth with current speed
meant the uncontaminated portion of the water column grew
and shrank in an approximately 6-hour cycle, aligned with the
tidal currents. This was very clear when data were summarized
by tide bin (Figure 9).

The 5 hypothetical fish distribution scenarios are shown in
Figures 10A–E, along with samples removed according to the 5th,
50th, and 95th percentile entrained air depth for each tide bin
(hatchlines), and acoustic nearfield (crosshatched area along the
bottom). Different levels of entrained air contamination had clear
effects on fish abundances obtained from each of the 5 distribution
scenarios (Figure 11). The magnitude of the impact on “observed”
fish abundance over the course of the tidal cycle varied according
to the underlying vertical distribution of fish. Generally, error in
abundance estimates was greatest whenever fish were most
concentrated in the upper water column (Figures 11B, D). For
scenarios with fish in the upper- and mid-water-column, omission
of data in the entrained air layer generated a distinct tidal pattern
in observed fish abundance, as fewer fish were detected at higher
current speeds (Figures 11A, B, D, E). This was true for all three
entrained air levels applied to the simulated scenarios. Observed
abundance of fish inhabiting the lowermost water column was
primarily affected by the exclusion of data in the acoustic nearfield
A

B

C

FIGURE 6 | Summary of all active acoustic recording periods from the deployment, spanning 30 March to 23 May 2018. (A) Current velocity (negative is ebb
direction, positive is flood), (B) entrained air depth, and (C) percent of analyzable samples that were contaminated by entrained air in each recording period. The
times of spring and neap tides are indicated by the orange diamond and purple triangle symbols, respectively, and the colored bars span 2 days on either side. Note
that the entrained air layer depth stops at the acoustic nearfield, located 2.4 m above the seafloor.
March 2022 | Volume 9 | Article 851400

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Viehman et al. Active Acoustics in Tidal Currents
A CB

FIGURE 7 | Distribution of depths and current speeds sampled during (A) the entire dataset, (B) recording periods within 2 days of spring tides, and (C) recording
periods within 2 days of neap tides. Upper panels: the current speeds recorded during all periods of the respective data subset, representing speeds that would be
sampled throughout the water column if there were no contamination from entrained air. Lower panels: the depth and current speed distribution of uncontaminated
recording periods. Each depth bin spans 5% of the water column (the lowermost two depth bins were not sampled in any recording periods due to the height of the
nearfield exclusion above the sea floor). To the right of each bar is the percentage of total recording periods within the respective data subset (e.g., entire dataset,
spring tide, or neap tide).
A B

FIGURE 8 | The distribution of (A) entrained air depth and (B) percent of analyzable samples missing from each recording period, grouped by current speed
category and tidal current direction (ebb or flood). Light blue indicates ebb tide, dark pink indicates flood tide. White points are the median value, boxes span the
interquartile range (IQR), whiskers extend to 1.5*IQR, and violins span the minimum and maximum values in each group. Numbers at the top indicate the number of
recording periods in each group.
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(a constant negative bias; Figure 11C, solid red line); however,
lower-water-column observed abundances were also affected by
the more extreme level of entrained air contamination
(Figure 11C, dashed red line).

The observed vertical distribution of fish was also heavily
affected by the differing levels of entrained air contamination, as
demonstrated with scenario 5 (Figure 12). Estimates of fish
abundance in the uppermost portion of the water column were
most affected, particularly during the running tides (ebb and
flood) when entrained air extended the farthest. Even the best
case situation, using the 5th percentile of entrained air depths,
resulted in excluding the majority of fish in the upper 10% (3.2-
4.5 m depth) of the water column in all tidal stages, and the
upper 20% (6.3-8.9 m depth) during flood tide. Due to the height
of the acoustic nearfield above the sea floor, fish in the lowermost
layers of the water column were also noticeably under-sampled.
4 DISCUSSION

Active acoustics technologies provide more detail and breadth of
information on fish throughout the water column than any other
sampling method currently available. However, entrained air
poses a significant problem for active acoustics data collected at
Frontiers in Marine Science | www.frontiersin.org 9
tidal energy sites, and this must be considered when developing a
study or environmental monitoring plan. The magnitude of
entrained air contamination varies by site, and will be heavily
dependent on local conditions (e.g. hydrodynamics, bathymetry,
and weather; Baschek et al., 2006; Jech et al., 2021). The FORCE
tidal energy test site has some of the fastest tidal currents on the
planet (> 5 m·s-1, Karsten et al., 2013), and its complex
bathymetry and resulting dynamic current regime makes it one
of the more challenging locations to use active acoustics
instruments. Though the FORCE site is heavily affected by
entrained air, the considerations discussed below will likely
apply to echosounder users at other tidal energy test sites, as well.

Backscatter from entrained air contaminated 30% of all
samples in our active acoustic dataset, and most of these were
in the upper water column. However, contamination by
entrained air varied greatly over time. The entrained air layer
regularly spanned the entire water column during spring tides,
though it rarely surpassed the middle water column during neap
tides. So, while there were multiple days in a row with high levels
of entrained air contamination, there were also periods of time
with “best case” contamination levels, which would yield lower
error rates in acoustically derived estimates of fish abundance.
Peak current speeds were lower during neap tides than spring
tides, but were well represented in the data throughout much of
A B

C D

FIGURE 9 | Data from all recording periods summarized by position in the tidal cycle. (A) Percent of analyzable samples missing due to entrained air contamination,
(B) depth of entrained air layer relative to the surface, (C) water column mean current speed, and (D) water column total depth. The tidal cycle was divided into 24
equal bins, each spanning approximately half an hour. Light blue indicates ebb tide, dark pink indicates flood tide, and yellow indicates the tide bins containing slack
tides. Horizontal black lines are the median of each group, boxes span the interquartile range (IQR), whiskers extend to 1.5*IQR, and points are outlying values.
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the water column. Active acoustics data collected near neap tides
are therefore likely to consistently yield more complete
information on fish abundance and vertical distribution than
data collected closer to spring tides.

That being said, we found that the distribution of entrained
air backscatter over the shorter time scales (e.g. during a tidal
cycle) could magnify the error introduced to estimates of fish
abundance and vertical distribution. In our simulations, the
tidally fluctuating extent of the entrained air layer generated
false tidal patterns in observed fish abundance, depending on the
underlying vertical distribution of fish. The largest errors
occurred when fish were mainly present in the uppermost
layers of the water column, as this generated the strongest tidal
pattern in estimated abundance (Figures 11B, D). Fish in the
mid-water-column were increasingly omitted as current speed
increased (Figures 11A, E). Abundance estimates of fish in the
Frontiers in Marine Science | www.frontiersin.org 10
lowermost layers were mainly affected by the omission of data
due to the height of the instrument above the sea floor and the
extent of the acoustic nearfield, which introduced a constant
negative bias (Figure 11C). Given the many species- and life-
stage-specific depth preferences of fish, the prevalence of
entrained air will therefore influence the extent to which
different species are likely to be sampled by active acoustic
instruments (for now ignoring other species-specific factors
that affect detectability, such as their acoustic scattering
properties; Horne, 2000).

The spatiotemporal fish distributions that we simulated were
generalized examples of some commonly exhibited depth
preferences among fish, and these may apply to many of the
species likely to be in Minas Passage. For example, Scenario 1
may represent pelagic fish species that use most of the water
column over the course of a day, including Atlantic herring,
A B

C

E

D

FIGURE 10 | Hypothetical fish distributions generated for scenarios 1 to 5 [(A-E), respectively]. Color indicates the number of fish in each depth bin. Datapoints
excluded by the 5th (dot-dash line), 50th (solid line), and 95th (dashed line) percentile depth of the entrained air layer are indicated by the hatched area. The
crosshatched rectangle covering the lowermost 2 m of the water column indicates the data that would be omitted due to the height of the acoustic nearfield above
the sea floor.
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Atlantic mackerel, and striped bass (Castonguay and Gilbert
1995, Redden et al., 2014; Keyser et al., 2016; Viehman et al.,
2018). Atlantic salmon, typically found in the uppermost 10 m in
the northwest Atlantic, may be well-represented by Scenario 2
(Dutil and Coutu, 1988; Sheehan et al., 2012). The Minas Basin is
inhabited by a large number of demersal species, such as Atlantic
cod, Atlantic sturgeon (Acipenser oxyrhynchus), winter flounder
(Pseudopleuronectes americanus), white hake (Urophycis tenuis),
and dogfish (Squalus acanthius), among many others (Parker
et al., 2007). Such species are likely to be on the seafloor or in the
lowermost meters of the water column (e.g. Hobson et al., 2007),
and therefore represented best by Scenario 3. Silver- and yellow-
phase American eels have exhibited STST (Scenario 4) when
migrating or moving around their home range, though with
more frequent vertical movements during a tide and not always
traversing the whole water column (Parker and McCleave, 1997).
Other species have also exhibited STST, such as Atlantic cod
Frontiers in Marine Science | www.frontiersin.org 11
(though with smaller vertical movements above the seafloor;
Arnold et al., 1994; Hobson et al., 2009), and possibly Atlantic
mackerel (Castonguay and Gilbert 1995). The cyclic changes
represented by Scenario 4 could also be extended to diel
differences in vertical distribution, which would bring fish into
and out of the under-sampled layers of the water column on a
24-hour cycle (rather than 12-hour). Many species and life stages
of fish exhibit some level of diel vertical migration; e.g. Atlantic
herring (Huse et al., 2012; Viehman et al., 2018) and alosids
(American shad, Alosa sapidissima; Alewife, A. pseduoharengus;
and river/Blueback herring, A. aestivalis; Stone and Jessop, 1992).
Scenario 5 may represent a mixed species assemblage, which is
more realistic for this location; however, the proportions of fish
exhibiting each type of distribution were chosen somewhat
arbitrarily, as there is little information to base these on.

It is unknown whether species-specific depth preferences will
persist in high-speed tidal channels. Apart from STST, most
A B

C

E

D

FIGURE 11 | Fish abundance over the course of the tidal cycle for simulated fish distribution scenarios 1 to 5 [(A–E), respectively]. Actual abundance (black) is
shown in contrast to abundance that would be observed under different levels of entrained air contamination (red lines).
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knowledge of different species’ depth distributions and vertical
movements comes from measurements obtained in less energetic
environments. Some information exists for tidal channels.
Atlantic sturgeon, for example, are normally a demersal
species, but acoustically-tagged sub-adults were found to
transit Minas Passage pelagically (Stokesbury et al., 2016),
slightly deeper during ebb tide than flood tide (Lilly et al.,
2021). This could increase their detectability by active acoustics
instruments (deployed as presented here), as individuals would
be more likely to be in the middle-water-column rather than in
the omitted layers near the sea floor. Eight acoustically tagged
silver-stage American eels have been detected in the FORCE test
site, and though they were mainly detected during ebb tide, they
did not appear to exhibit the vertical motions associated with
STST which this species has displayed elsewhere, instead
utilizing most of the water column (Redden et al., 2014).
Striped bass have been detected at the FORCE test site from
summer through winter, carrying out diel vertical migrations
from 20-40 m depth during the day to the upper 30 m at night,
except at temperatures below 1˚C (Redden et al., 2014; Keyser
et al., 2016). If Atlantic sturgeon, American eel, and striped bass
all move pelagically at the FORCE site, then their availability to
sampling by active acoustics may be best represented here by
Scenario 1 (e.g., greater error in estimated abundance at peak
flow). A better understanding of how different species utilize the
water column in high-flow areas is necessary to assess their
likelihood of sampling by active acoustic instruments.

Tidal and diel shifts in fish depth appear to be common across
tidal energy sites, and these shifts could additionally influence the
effects of entrained air on acoustically derived estimates of fish
abundance and distribution. In Minas Passage, active acoustic
measurements of fish (expected to be mainly overwintering
Atlantic herring) found them to be more evenly spread out in
Frontiers in Marine Science | www.frontiersin.org 12
the water column at night than during the day (Viehman et al.,
2018), which was also observed throughout the year for a mixed
fish assemblage in Cobscook Bay, USA (Viehman et al., 2015). In a
tidal channel in Tasmania, Australia, fish were more closely
associated with the surface at higher current speeds (Scherelis
et al., 2020). In the Holyhead Deep, UK, European sprat (Sprattus
sprattus) carried out diel vertical migrations linked to the depth of
light penetration (Whitton et al., 2020), and in Admiralty Inlet,
USA, the vertical location of fish and zooplankton changed on a
24-hour cycle (Gonzalez et al., 2019). Periodic vertical movements
such as these could bring fish into and out of the entrained air
layer at regular intervals. The possible interaction of this periodic
movement with tidal patterns in entrained air depth couldmask or
generate patterns in observed fish abundance over time (as seen
for Scenarios 4 and 5; Figures 11D, E). These considerations also
apply to fish shifting their depth usage in response to deployed
MHK devices; for example, avoiding a device by moving higher or
lower in the water column, and therefore potentially into or out of
the entrained air layer. There has been some evidence that marine
animals (including fish and marine mammals) may change their
swimming behavior in response to device presence (Williamson
et al., 2021).

While the upper water column and higher current speeds (> 3
m·s-1) were under-sampled in this dataset, the lower 70% of the
water column was generally well-sampled for current speeds up
to 3 m·s-1 (Figure 7A). This is a large amount of data that can
yield information on fish use of particular depth bins and how
their depth may be influenced by a range of current speeds, all of
which can inform our understanding of their likelihood of
encountering an operating MHK device. However, information
gained from a subset of the full range of depths and current
speeds experienced at a site should not be assumed representative
of the remaining, under-sampled depths and speeds. This is due
A C DB

FIGURE 12 | Vertical distribution of fish in simulated distribution Scenario 5, during (A) low, (B) flood, (C) high, and (D) ebb tide. The “actual” vertical distribution
(light gray) is overlaid by the vertical distributions that would be observed under different levels of contamination by entrained air: 5th percentile air depth (blue), 50th

percentile air depth (hatched), and 95th percentile air depth (dark orange). Each depth bin spans 5% of the total water column depth, to facilitate comparison across
tidal changes in water level. Fish counts in the lowermost two depth bins were primarily reduced due to the height of the acoustic nearfield above the sea floor.
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to the above links between species, current speed, and depth
usage, but also to other potential effects of current speed on fish
behavior. For example, at a tidal energy site in the Pentland Firth,
UK, fish school abundance and physical size was found to change
as current speed surpassed 1 m·s-1, potentially indicating an effect
of physical forcing from tidal currents on schooling behavior
(Fraser et al., 2018; Williamson et al., 2019). In these
environments dominated by extreme physical forcing by tidal
currents, it remains important to determine the extent to which
information gathered at greater depths and lower speeds can be
extrapolated (if at all). This could be examined at tidal energy sites
that may have lower levels of entrained air contamination, or in
future data collected with additional, complimentary sensors.

Additional sensing technologies will be essential for filling the
gaps in active acoustics datasets that are left by entrained air, and
for providing the necessary context for interpreting results.
Acoustic telemetry has already provided valuable insight into
when different species are likely to be present and where they
are likely to be in the water column, and therefore how likely they
are to be sampled with active acoustics in a deployment such as
ours. Acoustically tagged individuals can be tracked over large
distances, providing much-needed spatial context for the narrow
volume sampled by an echosounder. Acoustic telemetry can help
answer essential questions for building probability of encounter
models, such as the proportion of a given fish population likely to
come into the vicinity of a tidal turbine, and whether fish are
actively swimming or drifting passively with the current. This adds
to the information active acoustics provides for such models,
which is fine-scale information on fish presence in the depths
spanned by a given device, and how this changes over short and
long time scales (for many more fish than can be tagged).

As with active acoustics, the efficiency of some acoustic
telemetry systems can be reduced by current speed (Redden
et al., 2014; Keyser et al., 2016; Tsitrin, 2019), resulting in fewer
observations offish location and depth during the time periods of
greatest interest. This drop in detection probability could be
related to the number of pulses that must be received from a
given tag to allow a detection (Redden et al., 2014), the chance of
a fish moving quickly past a receiver between acoustic tag
transmissions (Keyser et al., 2016), as well as severe tilting of
tethered receiver moorings in faster currents (Sanderson et al.,
2017). These issues could be mitigated with appropriate choice of
acoustic tags, mooring design, and receiver deployment
(Sanderson et al., 2017; Sanderson et al., 2021). Recent
experiments have shown drifting receivers could improve long-
term tracking of individuals transiting Minas Passage, which
wouldn’t necessarily be possible with fixed receiver arrays
(Sanderson et al., 2021). A combination of active acoustics and
acoustic telemetry, using both stationary and drifting receivers,
could yield a much more complete picture of fish use of a tidal
energy site and their chance of encountering MHK devices.

Fish activity within the entrained air layer itself may be
quantifiable using optical techniques. While bubble plumes are
largely “opaque” to active acoustic instruments, cameras may be
less affected unless bubble density is very high. Video has been
used for studying fish interactions with tidal energy turbines
Frontiers in Marine Science | www.frontiersin.org 13
(Hammar et al., 2013; Broadhurst et al., 2014; Matzner et al.,
2017), and in many other underwater applications requiring fish
detection (e.g. Davidsen et al., 2005; Ellis and Bell, 2008). Optical
systems cannot be used at night without additional lighting,
which can affect fish behavior (Marchesan et al., 2005), and
turbid or debris-laden water reduces fish detectability
substantially (Ellis and Bell, 2008; Matzner et al., 2017).
However, during daylight and with a few meters of visibility,
there is an opportunity for video to be utilized for fish detection
within the entrained air layer (Pattison et al., 2020). If optical
data could be collected concurrently with an active acoustic
system, ensuring sampled volumes overlap (or nearly do), results
could help us understand how fish presence in the entrained air
layer compares to abundance lower in the water column, and to
what extent acoustically derived information from greater depths
might be extrapolated upward.

Additional sensing technologies can help address another gap
in active acoustics data analysis, which is the species and sizes of
detected fish. This information would be helpful to those assessing
the risk posed by tidal energy turbines, particularly when
threatened or endangered species may be present. Information
on fish species and length is also required to convert acoustic
backscatter values to quantities of fish (Horne, 2000), unless fish
are spread out enough to be detected and counted individually
(e.g. Shen et al., 2016). Active acoustics data cannot usually
provide identification of the detected scatterers to the species
level without additional supporting information, which is typically
obtained with trawls (Horne, 2000). The highly energetic and
dynamic conditions at tidal energy sites often make them very
difficult to sample safely or efficiently with trawls (Vieser et al.,
2018), particularly at the spatial and temporal resolution required
for classifying backscatter from a mixed assemblage within a
rapidly changing environment. To date, most active acoustic
studies at tidal energy sites have lacked physical sampling and
stopped short of converting fish backscatter to estimates of
abundance or biomass (Viehman et al., 2015; Fraser et al., 2018;
Viehman et al., 2018; Staines et al., 2019; Williamson et al., 2019;
Scherelis et al., 2020), with only one able to carry out concurrent
trawling of a distinct layer of schools (Whitton et al., 2020).

Stereo optical camera or video systems may be useful
alternatives to physically sampling fish at tidal energy sites. In
recent years, species and length estimates from stereo camera
systems have been found suitable for converting active acoustics
backscatter to biological quantities, including in “untrawlable
environments” (Rasmuson et al., 2021). Stereo optical systems
are additionally non-lethal to sampled fish, less cumbersome
than midwater trawls, and offer greater spatial resolution than
trawls can provide (Boldt et al., 2018). Integrated optical-acoustic
systems have been explored for MRE site monitoring, though so
far only alongside high-frequency multibeam echosounders
(Cotter and Polagye, 2020). Some challenges will need to be
overcome for optical sensors to inform analysis of active acoustic
data collected throughout the water column. As previously
mentioned, optical systems require adequate lighting and water
clarity for fish detection and identification. They also sample a
much smaller volume than active acoustic instruments, which
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can complicate comparison to the larger volume sampled
acoustically and can result in low sample sizes (Boldt et al.,
2018). In addition to optical systems, acoustic tag detections
could provide insight on the species in the area of an
echosounder; however, only the species that were tagged would
be detected, and any effects of high flow on detection probability
would need to be addressed.

Using multiple acoustic frequencies could also broaden the
information that can be gained from an active acoustic dataset.
Data from multiple frequencies could aid in identifying different
groups of scatterers (e.g. air bubbles, fish with and without swim
bladders, zooplankton, etc.) based upon their frequency response
(Horne, 2000; Korneliussen, 2018). The frequency response alone
may not always be sufficient to identify fish to the species level
without supporting information on which species are likely to be
present. However, it is possible that the frequency response could
be used to improve identification and removal of backscatter from
entrained air bubbles. The entrained air detection method we used
here relied mainly on morphological characteristics of the
backscatter, which, for entrained air, mainly took the form of
plumes extending downward from the surface. This is similar to
methods used at other tidal energy locations (Viehman et al., 2015;
Fraser et al., 2018; Whitton et al., 2020). Manual scrutiny of the
data showed that backscatter from entrained air did not always take
this form (e.g., when the entire water column appeared to be
contaminated by additional backscatter; Figure 7), and there were
many near-surface backscatter features that were not easily
classified as fish or bubbles based on morphological criteria alone
(Figure 5). Adding a frequency response filter to the morphological
one applied here could improve backscatter classification, and
further ensure that remaining backscatter is likely to be from fish.

Multiple acoustic frequencies could also aid in characterizing
the entrained bubbles themselves, which would be useful for
assessing whether they are likely to affect the performance of
surface-mounted echosounders transmitting sound through the
air layer to quantify fish below (Dalen and Løvik, 1981; Vagle and
Farmer, 1991; Jech et al., 2021). To our knowledge, frequency
response has not yet been used for identifying or characterizing
entrained bubbles at tidal energy sites. However, this approach
would be worth exploring in new or existing multifrequency
datasets, as it can inform data collection moving forward.
5 CONCLUSION

Active acoustic technologies are well-suited for collecting
information on fish abundance and distribution throughout the
water column, with the resolution and breadth required for
predicting the likelihood of fish occurring at the same depths as
MHK devices. This information can add to our understanding of
potential encounter rates, and therefore risk devices pose to fish.
However, the prevalence of entrained air at tidal energy sites often
masks large portions of the upper water column from
echosounders, particularly at high current speeds. In the dataset
examined, the lower 70% of the water column was well-
represented for current speeds under 3 m·s-1, but the upper
water column and faster current speeds were under-sampled in
Frontiers in Marine Science | www.frontiersin.org 14
comparison. These under-sampled depths and periods of time
constitute gaps in the active acoustic dataset that limit our ability
to accurately measure fish abundance and vertical distribution,
and therefore their potential overlap with MHK devices.
Additional technologies, such as acoustic telemetry and optical
systems, could be used concurrently with active acoustics to help
fill these gaps and maximize the information that can be extracted
from active acoustics data. While other tidal energy sites may
experience less data contamination from entrained air, patterns in
data loss are likely to be similar. The possible influence of these
patterns on acoustically derived measurements of fish abundance
and vertical distribution must be considered when planning a
study or environmental monitoring plan at a tidal energy site, and
when interpreting results from active acoustic datasets.
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Understanding the abundance and distribution of fish in tidal energy streams is important 
for assessing the risks presented by the introduction of tidal energy devices into the 
habitat. However, tidal current flows suitable for tidal energy development are often highly 
turbulent and entrain air into the water, complicating the interpretation of echosounder 
data. The portion of the water column contaminated by returns from entrained air must 
be excluded from data used for biological analyses. Application of a single algorithm 
to identify the depth-of-penetration of entrained air is insufficient for a boundary that is 
discontinuous, depth-dynamic, porous, and varies with tidal flow speed.

Using a case study at a tidal energy demonstration site in the Bay of Fundy, we describe 
the development and application of deep machine learning models with a U-Net based 
architecture that produce a pronounced and substantial improvement in the automated 
detection of the extent to which entrained air has penetrated the water column.

Our model, Echofilter, was found to be highly responsive to the dynamic range of 
turbulence conditions and sensitive to the fine-scale nuances in the boundary position, 
producing an entrained-air boundary line with an average error of 0.33  m on mobile 
downfacing and 0.5–1.0 m on stationary upfacing data, less than half that of existing 
algorithmic solutions. The model’s overall annotations had a high level of agreement 
with the human segmentation, with an intersection-over-union score of 99% for mobile 
downfacing recordings and 92–95% for stationary upfacing recordings. This resulted in a 
50% reduction in the time required for manual edits when compared to the time required to 
manually edit the line placement produced by the currently available algorithms. Because 
of the improved initial automated placement, the implementation of the models permits 
an increase in the standardization and repeatability of line placement.

Keywords: machine learning, deep learning, hydroacoustics, entrained air, marine renewable energy, tidal energy, 
environmental monitoring, marine technology
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1 INTRODUCTION

The need for clean, non-carbon emitting, alternatives for power 
production is well established (IPCC, 2021). With advancements 
in technology, energy extraction from kinetic marine sources 
(ocean current, tidal energy streams, and wave) have recently 
emerged as potential contributions to the suite of renewable 
energies for the generation of electricity (Cada et  al., 2007; 
Roberts et  al., 2016; Copping et  al., 2020; IRENA, 2020). In 
the case of energy extraction from tidal energy streams, tidal 
turbines are introduced into nearshore, coastal ecosystems that 
can be important habitats of major biological importance to 
fish for migration, nursery, and feeding activities (Blaber et al., 
2000; Melvin and Cochrane, 2012; DFO, 2018; Tsitrin et  al., 
2022). The development of this nascent industry is therefore 
introducing new technologies and new but uncertain risks into 
the marine environment (DFO, 2008). In regions where fish 
stocks are managed or listed for special protections, regulators 
require monitoring for potential effects for fish as a condition 
for licensing tidal and other marine renewable energy (MRE) 
projects. Depending on local flow and bathymetric characteristics 
in the nearshore environments, the current flows suitable for 
tidal energy development can be turbulent (Cornett et al., 2015; 
Melvin and Cochrane, 2015; Williamson et  al., 2017; Perez 
et al., 2021; Wolf et al., 2022), entraining persistent and deeply 
penetrating air into the water column. An efficient backscatterer 
of sound, the presence of air in the water column complicates 
the post-processing activities for data collected with acoustic 
instruments.

Hydroacoustic methods, applied to data collected with 
scientifically calibrated echosounders, are used to quantify the 
distribution and abundance of fish in the marine environment 
(Johannesson and Mitson, 1983; Fernandes et al., 2002; Benoit-
Bird and Lawson, 2016). Echosounders emit a pulse of sound 
(a “ping”) into the water and record the magnitude of the 
returned backscatter (the “echo”) (Simmonds and MacLennan, 
2005). The advantage of echosounders is the ability to sample 
the full water column in high spatiotemporal resolution. 
However, to achieve the goals of biological analyses for fish 
presence and distribution, backscatter recorded from physical 
interfaces must be excluded, including from the seafloor 
or sea surface (sea-air interface) and those portions of the 
water contaminated by backscatter from entrained air. The 
international standard solution to this is to use the software 
Echoview (Echoview Software Pty Ltd., Hobart, Australia), 
which enables advanced visualization and post-processing 
of hydroacoustic data. Echoview includes a library of highly 
configurable, parameterized algorithms by which to achieve the 
work of post-processing, including defining the boundaries of 
the region suitable for biological analyses.

The classical algorithms of Echoview generally produce 
appropriate placement for the lines designating the seafloor 
and sea surface given their continuous, strongly reflective, and 
non-porous natures. In contrast, the boundary of the entrained-
air penetration is indistinct, porous, and discontinuous, and 
formed of local features that can only be distinguished from 

biological features through their broader context. The profile 
of entrained air is further complicated for recordings at sites 
where the penetration of entrained air is influenced by tidal flow 
speeds which can range from slack tide to 5 ms-1 (10 knots), e.g. 
Bay of Fundy (Karsten et al., 2011). These characteristics limit 
the potential for classical algorithms to successfully identify the 
extent of entrained air within the water column. This lack of 
automation has important consequences for hydroacoustic data 
post-processing and analyses:

•  substantial and time-consuming manual edits are required to 
refine the ping-by-ping demarcation of the ambit of entrained 
air,

• the quantity of edits generates analyst fatigue putting at risk the 
regions where the full force of analyst attention is needed for 
discerning usable data, and

• standardization and/or repeatability is impossible to achieve 
between analysts and within the work of a single analyst.

Machine learning is a methodology that enables the 
construction of models through the use of example input/
output data. In particular, deep learning allows us to build the 
complex models which are necessary to solve challenging tasks 
which would otherwise require a human to laboriously perform 
(LeCun et  al., 2015; Schmidhuber, 2015; Goodfellow et  al., 
2016). Deep learning models have revolutionized computer 
vision over the last 10 years (Krizhevsky et al., 2012; He et al., 
2016; Bengio et  al., 2021), have been successfully applied to 
image segmentation tasks (Ronneberger et  al., 2015; Redmon 
et al., 2016; Minaee et al., 2022), and have attained human-level 
or superhuman performance at narrow tasks (Karpathy, 2014; 
Russakovsky et  al., 2015; He et  al., 2016; Santoro et  al., 2016; 
Silver et al., 2017). We hypothesised that a deep neural network 
would be able to solve the task of placing the entrained-air line 
correctly. Hence we deployed machine learning methods, with 
a convolutional neural network architecture inspired by U-Net 
(Ronneberger et al., 2015) and EfficientNet (Tan and Le, 2019), 
to determine whether such models can generate an entrained-air 
line with better placement than the existing classical algorithms 
(as implemented in Echoview) and thus reduce the amount of 
human labour needed to complete this task.

In the deep learning framework, an artificial neural network is 
instantiated with a particular architectural design (with randomly 
initialized parameters), and its parameters are iteratively updated 
through gradient descent in order to maximize performance at 
the objective task. Through this training process, the network 
learns to approximate a function that maps a set of input stimuli 
to the correct outputs. In the context of this work, the input to the 
model was a 2-D image-like representation of the hydroacoustic 
recording for which the axes are depth and time, and the 
intensity at each pixel is the volume backscattering strength (Sv 
dB re: 1 m−1); we refer to this input as an echogram. The model’s 
main output is a prediction of the depth of the entrained-air 
boundary line for each point in time (each ping). In addition to 
this, our model also predicts the depths of the seafloor and sea 
surface boundary lines, and (for each datapoint) whether the 
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Echofilter

echosounder was active (emitting pings) or passive (in listening-
only mode).

Our final implementation, Echofilter, is openly available 
under the AGPLv3 license. Python source code and a stand-
alone Windows executable are available at https://github.com/
DeepSenseCA/echofilter, with command line interface (CLI) 
and application programming interface (API) documentation 
available at https://DeepSenseCA.github.io/echofilter/.

2 MATERIALS AND EQUIPMENT

2.1 Data Sources
Hydroacoustic data was collected from two tidal energy 
demonstration sites within the Bay of Fundy in Nova Scotia, 
Canada: Minas Passage in which flow speeds can exceed 5 m s−1 
(Karsten et al., 2011) and Grand Passage in which flow speeds 
can achieve 2.5 m s−1 (Guerra et al., 2021).

 “Stationary” data was collected using a calibrated Simrad 
EK80 WBAT 7° split-beam echosounder operating in continuous 
wave (CW) mode at 120 kHz in Minas Passage and in Grand 
Passage. The echosounder, with its transducer in an upward 
facing orientation was attached to a platform deployed to the 
seafloor (see Figure  1). The seawater depth at the platform 
location varied with tide height from 29  m to 44  m at Minas 
Passage, and 14 m to 20 m at Grand Passage. The echosounder 
was deployed in Minas Passage for three 2-month periods in 
2018. Data was recorded for 5 minutes every half hour. Passive 
data collection with the echosounder in listening-only mode 
to document system self-noise and record levels of ambient 
sound present at 120 kHz was collected during two of the three 
deployments. There were two deployments of the echosounder in 
Grand Passage during late 2019 and early 2020. In both cases, the 
echosounder was deployed for less than 14 days. Data collection 
cycle in Grand Passage consisted of one-hour continuous data 
collection in alternating hours. Short durations of passive data 
were collected each hour.

 “Mobile” data was collected from the Minas Passage site 
using a calibrated Simrad EK80 WBT 7° split-beam echosounder 
operating in CW mode at 120 kHz. The transducer was deployed 

in a downward facing orientation attached via polemount to 
the vessel. The mobile survey pattern consisted of a set of six 
parallel transects, each of length 1.8 km and separated by 200 m, 
encompassing the Minas Passage multi-berth tidal energy 
demonstration site in the northern portion of the Passage, plus 
three reference transects located across the Passage near the 
southern shore. For ten of the seventeen mobile surveys, one 
additional transect was added to sample a region of interest in 
the demonstration site. The mobile surveys consisted of discrete 
24-hour data collection periods during which the grid of transects 
was traversed four times, weather permitting. A completed grid 
consisted of one with-the-current and one against-the-current 
traverse of each transect. Seventeen such surveys were conducted 
between May 2016 and October 2018. Seawater depths ranged 
from 13 m to 67 m. Mobile data collection included periods of 
passive data collection with the transiting of each transect. No 
mobile data was collected in Grand Passage.

The echosounder data files were imported into Echoview 
(version 10.0) and post-processed in the typical way: (i) assigned 
calibration parameters, (ii)  examined the data and removed 
noise, (iii)  removed the passive data from further processing, 
(iv) set a line at constant range from the transducer face (1.7 m 
in this case) by which to exclude the transducer nearfield and, 
(v) applied Echoview algorithms to estimate, for each ping, the 
position of the seafloor (for downfacing echosounder) or sea 
surface (for upfacing echosounder) and the depth-of-penetration 
of the entrained air. In order to exclude the acoustic deadzone 
inherent in echosounder data (Simmonds and MacLennan, 
2005), a one-meter offset was applied to the bounding line 
(seafloor or sea surface) and to the entrained-air line.

2.2 Data Partitioning
The full suite of Echoview files were divided into sets of files for 
training, validating, and testing the machine-learning models. 
The mobile downfacing dataset collected at Minas Passage 
consisted of 17 surveys, repeated at (a subset of) the same 10 
transects on 17 different days spanning the course of three years. 
We selected two transects and placed all recordings from these 
in the test set. The remaining data was partitioned into training, 

FIGURE 1 | Illustration of the boundaries defining the range of the observable water column for an upfacing echosounder. (A) Range to sea surface. (B) Deadzone 
setback: the range in which biomass within the acoustic beam is indistinguishable from the strong surface echo (Simmonds and MacLennan, 2005). (C) Nearfield 
line: a line set at a constant range to exclude the transducer “nearfield” in which the sound pulse is not yet organized (Simmonds and MacLennan, 2005).  
(D) Position of the upfacing transducer. (E) Entrained-air line: depth range of observable water is restricted to that not contaminated by entrained air.
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validation, and (unused) “test2” partitions with an 80/10/10% 
split, stratified against the season in which the data was collected 
(winter vs non-winter) to ensure an equal split of the sparser 
winter recordings. The stationary data was grouped into blocks 
of 6 hours of consecutive recordings, and these blocks were 
partitioned at random (without stratification). We placed 80% 
of the MP:sta↑ and GP:sta↑ data files in the training partition. 
For the MP:sta↑ dataset, 10% of the data was used for model 
validation and 10% for final testing. Due to its smaller size, we 
did not use any GP:sta↑ data for the model validation process 
and kept the remaining 20% of the data for testing. The number 
of recordings and pings for each partition of each dataset is 
indicated in Table 1.

Files used for manual evaluation were selected from the 
MP:sta↑ and GP:sta↑ validation and test partitions, and chosen 
to ensure 24-hour coverage, with both neap tide and spring tide 
included. Stratifying the samples in this way ensured we would 
see examples of model performance under best-case and worst-
case entrained-air scenarios. We also selected files from the 
MP:sta↑ and GP:sta↑ training partitions to inspect, in order to 
determine whether errors were due to applying the models on 
new data, indicating an issue with the model’s ability to generalize 
(overfitting), or whether there was also a problem on the training 
data, indicating an issue with the model design (underfitting).

3 METHODS

3.1 Echoview Algorithm
As a baseline to benchmark our models against, we used Echoview 
algorithms to generate seafloor (downfacing recordings), sea 
surface (upfacing recordings), and entrained-air boundary lines.

Two separate Echoview algorithmic approaches were used for 
estimating the ambit of entrained air within the stationary and 
mobile datasets, respectively. For data collected during stationary 
surveys, periods of recorded passive-data were excluded and a 
2-D Gaussian blur was applied to the remaining echogram using 
the Echoview “XxY Convolution” operator. We used a 13-by-13 
kernel, and a standard deviation of σ = 2.0 in both depth (over 
return sample indices) and time (over ping indices) dimensions. 
We then used the “Threshold Offset” line picking operator, with 
a minimum threshold boundary of −80 dB, to search below the 
surface line and define the ambit of entrained air for each ping. 
The position identified within each ping was then used as the 
automated demarcation between entrained air and water column 
in the original Sv echogram.

For data collected during mobile surveys, the “Best Bottom 
Candidate” line picking operator was used to estimate the ambit 
of entrained air at each ping. Because the Best Bottom Candidate 
operator identifies the first instance of strong signals deeper than 
weak signals in the water column, we first inverted the intensity of 
the Sv echogram by multiplying the values by −1 and adding −150 
to each result. We then used the Best Bottom Candidate operator, 
parameterized with −70 dB for the minimum Sv for a good pick 
and for the discrimination level, to identify the interface between 
entrained air (“weak”) values, and water column (“strong”) values 
in the inverse echogram. The position identified for each ping was 
then used as the automated demarcation between entrained air 
and water column in the original Sv echogram. This standardized 
protocol was used for the last 8 mobile surveys (surveys 10 
through 17). For the first 9 mobile surveys, the protocol was 
inconsistent (sometimes including smoothing operations on the 
line, and offsets of varying sizes) and yielded variable outputs; 
these surveys were excluded from our benchmarking analysis 
described in Section 4.1.

The Best Bottom Candidate line picking operator was used 
to estimate the position of the seafloor (downfacing recordings), 
and the sea surface (upfacing recordings). For seafloor detection, 
the default settings were used and included a bottom offset of 
0.5 m, except for the first two of the seventeen mobile surveys 
for which some of the parameters were adjusted. For sea surface 
detection, the default settings were used except for the backstep 
discrimination level which was halved to −25 dB.

The entrained-air and seafloor lines produced by the 
Echoview algorithms were used as seed lines which expert 
human annotators, with reference to the Sv echogram including 
a minimum Sv threshold set to −66 dB, then manually adjusted 
to create corrected, finalized annotations. These human-refined 
annotations were used as the targets for training the machine 
learning model.

3.2 Data Preprocessing
Annotated data was stored in Echoview EV files, which contain 
both the Sv data and human-generated annotations for the 
boundary lines. The EV files were opened in Python using 
win32com to interface with Echoview’s programming interface 
(API), and exported into several files. The surface, seafloor, and 
entrained-air lines were exported into Echoview line (EVL) 
file format. The Sv data was exported into CSV format twice as 
follows. The first Sv CSV file (“raw Sv CSV”) was exported with 
all EV exclusion settings disabled, and contained the entire Sv 

TABLE 1 | Summary of datasets used in this study: their recording locations, mobility, and recording orientation.

  No. Recordings No. Pings

Dataset Location Mobility Orientation Train Val Test Train Val Test

MP:mob↓ Minas Passage Mobile Downfacing (↓) 727 91 245 1.21M 148K 394K
MP:sta↑ Minas Passage Stationary Upfacing (↑) 7,249 919 875 2.45M 305K 300K
GP:sta↑ Grand Passage Stationary Upfacing (↑) 118 0 28 0.36M 0 96K

We indicate the sizes of the dataset partitions, in terms of the number of contiguous recordings (duration dependent on dataset), and the total duration of the recordings measured 
in number of pings (k, thousand; M, million).
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data in the EV file. The second Sv CSV file (“clean Sv CSV”) used 
the exclusion settings as implemented in the EV file so that all 
data which should be excluded from ecosystem analyses was 
masked out, appearing as the NaN indicator value −9.9 × 1037 in 
the output CSV. This means all datapoints above the entrained-
air line, below the seafloor line (for downfacing recordings), 
passive data, bad data time periods where the analyst deemed a 
sequence of pings to contain data throughout the water column 
too contaminated by returns from entrained air or suspended 
sediment to use at all, and other miscellaneous localized “bad 
data” caused by anomalous events such as a rope drifting into 
view which the analyst had labelled for exclusion, were removed 
from the output (set to the NaN indicator value), leaving only the 
datapoints deemed as “good data” by the analyst.

Since this export process requires using Echoview to read 
in and export the data from the EV file, and Echoview is only 
available for Windows, this first step of the data processing 
pipeline must be performed on a Windows system with a 
licensed copy of Echoview installed. The remaining steps in the 
data processing and model training pipeline only require Python 
and can be run on any operating system.

The CSV files and EVL files were loaded into Python with 
a custom data loader. The depth resolution (and number of 
datapoints) per ping sometimes differed during a recording 
session, resulting in data with an uneven sampling resolution; 
we addressed this by finding the modal depth resolution across 
pings and linearly interpolating the data for each ping onto the 
same array of depth sample points. We created a “target mask” 
based on the location of NaN-values in the clean Sv CSV. This 
target mask corresponds to the overall target for the network’s 
output. The depth lines loaded from the EVL files were linearly 
interpolated onto the same set of timestamps as the Sv data.

We observed some discrepancies between the depth lines and 
the mask, which was caused by (1) off-by-one differences when 
the line threshold is applied in Echoview compared with our own 
interpolation of the line; (2) analysts using boxes or freehand 
regions to annotate exclusion regions which are adjacent to the 
boundary lines. We handled this by identifying the upper and 
lower contiguous extent of the masked out area to generate new 
lines from the mask. For the entrained-air line, we primarily 
used the deepest extent of the two options as provided via the 
line annotation and the mask annotation. For the seafloor line, 
we primarily used the original line annotation as the network’s 
output target, but we also produced a second line (with more 
aggressive removal) which extended higher up the water column 
to include any additional masked out area. The spare “aggressive” 
version of the seafloor line was included as an auxiliary target 
during training.

The surface line annotations were mostly unchanged by the 
annotators from the output produced by Echoview’s algorithms. 
These were observed to be mostly accurate, but contained 
occasional large jumps in value. These outliers were detected and 
removed by using a median filter as follows. We applied a median 
filter with a kernel length of  201 and observed the residual between 
the raw signal and the median filter. Values more than 5 standard 
deviations (robustly estimated from the interquartile range,   
σ = iqr/1.35) were set to the median value. We then applied a 

median filter with a kernel length of 31 and removed anomalous 
values more than 4 standard deviations (robustly estimated from 
the interquartile range, σ = iqr/2.56) from the median. The second 
step was repeated until no anomalies were removed. Additionally, 
if the surface line was ever deeper than the entrained-air line, we 
set it to be the same depth as the entrained-air line. We found 
this anomaly removal process produced surface lines of sufficient 
quality. For downfacing samples, the surface line was set at 0 
(coincident with the transducer face).

Passive data annotations were taken as hard-coded on/off 
cycles where known a priori. Otherwise, passive data collection 
periods were identified using a bespoke algorithm. The first Sv 
responses, corresponding to depths closest to the echosounder, 
have large intensities when the echosounder is active and much 
lower values when the echosounder is passive. We identified 
passive data periods by observing the first 38 depth sample points 
(after our interpolation step onto a common sampling grid). We 
took the difference in Sv between consecutive pings, and then the 
median across the first 38 depth samples for each ping. Median 
differences which exceeded ±25 dB were identified as boundary 
points between passive and active recording periods.

Bad data periods were identified as collections of consecutive 
pings for which all the data was masked out. Periods of passive 
data recording were excluded from the bad data periods. Bad 
data periods in which the entrained-air line was at or below the 
seafloor line throughout the entire period were also excluded.

Bad data patches were identified by the “pixels” in the 
echogram which were masked out for any reason not already 
covered by being above the entrained-air line, below the seafloor 
line, during a period of passive data collection, or during a period 
of time identified as a bad data period.

Our data was comprised of both upfacing and downfacing 
echosoundings. In the recording data structure, and exported 
CSV files, the y-dimension is stored as increasing distance from 
the echosounder. To standardize our inputs to the network, we 
flipped the orientation of the upfacing data such that increasing 
indices in the y-dimension corresponded to increasing depth 
within the water column.

The number of timepoints per file was much larger than we 
could reasonably supply to the network as a single input “image”. 
Moreover, it is important that a single training batch contains a 
diversity of training data. To prevent the system from having to 
read in the contents of an entire recording file when needing to 
select only a small subset of the data to present for each training 
step, we broke the training data into chunks (shards) each with a 
length of 128 samples.

The pipeline for converting the CSV and EVL data into the 
preprocessed training shards can be executed with the command 
echofilter-generate-shards.

3.3 Training Inputs
When analysing echosounder data, it is common practice to offset 
the seafloor and entrained-air boundary lines by a fixed distance, 
1 m for the echosounders used here. The purpose of the fixed-
distance offsets are to exclude those portions of the data near 
boundaries, such as the sea surface or seafloor or the entrained-air 
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boundary, that may be biased due to the echosounder deadzone 
(see Figure 1) which is a function of the shape of the spherically 
spreading beam intersecting with a surface (Simmonds and 
MacLennan, 2005). In addition, it generates a buffer between the 
boundary of the entrained air and the data reserved for biological 
analyses, so as to exclude returns from entrained air adjacent to, 
but not connected to, the pronounced entrained-air boundary. 
This ensures processing errs on the side of excluding slightly more 
data, instead of accidentally including bad data. Some datasets 
had an offset of 1  m included in the line definitions, whereas 
others did not. We standardized this by subtracting offsets from 
the lines which had them included. Consequently, the model’s 
target output is to predict the exact boundary locations, and 
offsets can be added to its outputs as appropriate via optional 
settings in the Echofilter API.

Each training input image was normalized independently, 
based on the distribution of Sv values within the training input. 
Normalization was performed by subtracting the median over 
all Sv values, and dividing by a robust estimate of the standard 
deviation derived from the interdecile range (σ = iqr/2.56). A 
small number of NaN values were present in the raw Sv data, and 
these were set to a value of –3 after the normalization step.

The maximum apparent range of the echogram can in some 
cases be several times further than the actual depth of the water 
column. This is because the depth dimension corresponds to the 
time-of-flight of the signals, the maximum of which is determined 
by a maximum range parameter chosen by the operator of the 
echosounder, which may be held the same across many recordings 
and thus may be much larger than the local depth of the water 
column. In order to get the most precise output for the entrained-
air lines from the trained model, we would like to zoom in on 
only the salient region of the image: the water column, extending 
from seafloor to sea surface. This allows the model to predict the 
boundary point with sufficiently high granularity. However, since 
the depth of the seafloor is not necessarily known a priori, the 
model needs to be able to determine the depth of the seafloor, or 
range to sea surface, from the full echogram as well. For testing, we 
thus use a two-step approach. First, the full echogram is presented 
to the network and the seafloor and/or surface lines are predicted. 
These outputs are used to zoom in on the water column. Second, 
this zoomed-in echogram is presented to the network, and precise 
seafloor, surface, and entrained-air lines are generated.

Inputs to the network are samples from the distribution of 
plausible echograms. During training, inputs to the network 
were drawn from the training partition and augmented with 
several operations. (i) Temporal stretching, stretch/squashed by 
a factor sampled log-uniformly from [0.5, 2]. (ii) Random depth 
cropping. With p = 0.1, the depth was left at the full, original 
extent. With p = 0.1, the echogram was zoomed in on the range 
from the shallowest surface depth to the deepest seafloor depth 
(the “optimal” zoom). With p = 0.4, the echogram was zoomed in 
to a random range of depths close to the optimal zoom, stretched 
or squashed by up to 25%, but never so much as to remove more 
than 25% of the entrained-air line or (for downfacing recordings) 
more than 50% of the seafloor line. With p = 0.4, the echogram 
was zoomed in to a random range of depths between the full 
original extent and the “optimal” extent. Depth upper and lower 

limits were selected uniformly across the appropriate range. 
(iii) Random reflection in the time (ping) dimension, performed 
with p = 0.5. (iv)  “Color” jitter. We applied a “brightness” 
augmentation by offsetting normalized Sv values by a random 
additive offset chosen uniformly from [–0.5, +0.5], and a 
“contrast” augmentation by multiplying normalised Sv values by 
a random multiplicative factor chosen uniformly from [0.7,  1.3]. 
The same random offset and factor were used for each pixel in 
an echogram input. The order of the brightness and contrast 
augmentations was randomly selected for each input. (v) Elastic 
grid deformation, performed with p = 0.5. Elastic deformation 
was performed separately in the depth and time dimensions, 
to create an elastic grid deformation. We chose to deform the 
dimensions separately, instead of jointly as per a standard elastic 
deformation where space is stretched/squashed in a 2-D manner, 
because our targets are mostly at the ping level (depth of lines 
at each ping, whether the ping is passively or actively sampled, 
etc.) and apply to the entire column of data. A standard 2-D 
elastic deformation would break the relationship between our 
input and target; performing a joint elastic deformation on the 
echogram input would make it challenging to relate the input to 
the targets. We used σ = 8 in the time dimension, σ = 16 in the 
depth dimension, and α = 0.1 in both dimensions. The echogram 
was interpolated in 2-D, with the interpolation order randomly 
selected from linear, quadratic, and cubic (equal weighting).

Finally, the echogram was rescaled to size (128, 512) pixels 
(time-by-depth) for presentation to the network with nearest-
neighbour interpolation.

3.4 Model Architecture
The model architecture used is a U-Net (Ronneberger et  al., 
2015) with EfficientNet MBConv blocks (Howard et  al., 2017; 
Tan and Le, 2019), illustrated in Figure  2. This architecture 
is a convolutional neural network (CNN) with residual skip 
connections across blocks, 6 encoder layers where the size is 
spatially compressed, 6 decoder layers where the size is expanded 
back to the original input dimensions, and skip connections from 
the encoder to decoder blocks. The network has a backbone width 
of 32 channels throughout, and each MBConv block is inverse 
residual with an expansion factor of 6 (except the very first block, 
with has an expansion factor of 1). We used depthwise-separable 
convolutions with a kernel size of 5, and ReLU activations. We 
used Squeeze & Excite attention layers (Hu et al., 2019) on each 
block with a reduction factor of 2. In total, our final models each 
had 1.63M trainable parameters.

Since the input is rectangular, with higher resolution in the 
depth dimension, we downscaled the time dimension at a slower 
rate than the depth dimension. Downscaling was performed with 
max-pooling using a kernel size and stride of either 1×2 or 2×2 
(alternating blocks). The depth dimension was downscaled after 
every block, whilst the time dimension was downscaled every 
other block.

The decoder branch was a mirror of the encoder: upscaling 
in the depth dimension after every block, and in the time 
dimension every other block. Upscaling was performed using 
bilinear interpolation with torch.nn.Upsample.
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The model has 10 output planes. These correspond to 
the  probability (represented in logit form) that a pixel is at 
the boundary point for: (1) the entrained air (expanded), (2) the 
entrained air (original), (3) the seafloor line (expanded), (4) the 
seafloor line (original), (5) the surface line; and the probability 
(logit) that a pixel is within (6) a passive data period, (7) a bad 
data period (vertical region), (8) a miscellaneous bad data patch 
(to accompany expanded lines), (9)  a miscellaneous bad data 
patch (to accompany original lines), (10)  a miscellaneous bad 
data patch (to accompany original seafloor/expanded entrained 
air).

In practice, the expanded/original lines are almost identical 
and their pseudo-replication during training was superfluous, 
but their inclusion did indirectly increase the contribution of the 
entrained-air and seafloor lines towards the overall loss term. 
When performing inference with the model, we discard outputs 
2, 4, 9, and 10.

For the Bifacing model, these 10 output planes are replicated 
three times. One is the standard output, the second are logits 
which are updated only on downfacing inputs, and the third 
are logits which are updated only on upfacing inputs. In this 
way, the model learns to represent conditional probabilities  
P (boundary | upfacing), etc. After training the model, we can ask 
it to predict the boundaries and masks agnostic of the orientation 

of the recording, or conditioned on the orientation (upfacing or 
downfacing).

3.5 Model Training
The model was optimized with gradient descent to minimize a 
loss function. The loss function acts as a proxy for the task of 
interest; a high loss corresponds to worse performance on the 
task, and a low loss to better performance. We constructed our 
loss function as the sum of several terms, each corresponding to 
one of the output planes produced by the model. The loss terms 
for the seafloor, sea surface, and entrained-air lines were each 
the cross-entropy between the column of logits across all depths 
for a single ping against a one-hot representation of the depth of 
the line. The loss terms for the passive collection and bad data 
periods were binary cross-entropy between the  model’s output 
for that ping (a single scalar, after collapsing the depth-dimension 
with log-avg-exp; Lowe et al., 2021) and the target value. The loss 
term for the localized bad data regions was binary cross-entropy. 
Outlying surface line values detected with our algorithm during 
preprocessing were masked out from the training objective. 
We took the mean over pings for all loss terms. We took the 
mean over the batch dimension; for outputs conditioned on the 
orientation of the echosounder, we masked out irrelevant samples 
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FIGURE 2 | Neural network architecture for the Echofilter model. (A) Main architecture, using an adaptation of the U-Net framework with 6 downsampling blocks, 
6 upsampling units, and a single skip connection at each spatial resolution. The network contains a convolutional layer with 5×5 kernel and “same” padding (Conv5x5); 
BatchNorm (BN); rectified linear unit (ReLU); MBConv blocks (see panel B); max pooling (MaxP), with either 1×2 or 2×2 kernel and stride; and bilinear upscaling 
(Upsample) layers. The size of the latent representation of the image as it passes through the network is indicated. We train the network with W =128, H = 512, C = 32. 
(B)  Structure of MBConv block, containing pointwise convolution (Conv1x1), depth-wise convolution (DWConv5x5) and Squeeze & Excite layers. For downscaling 
blocks C ′ = C, and for upscaling blocks C ′ = 2C. The pointwise convolution on the residual branch is only present for upscaling blocks, where C ′ ≠ C.
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before taking the batch-wise mean. When training the bifacing 
model with conditioning signals, all stimulus presentations were 
double-counted and the entire loss was divided by two to correct 
for this.

The model was optimized using the RangerVA optimizer 
(Wright, 2019), which combines RAdam, Lookahead, and 
gradient centralization (Zhang et  al., 2019; Liu et  al., 2020; 
Yong et  al., 2020; Tong et  al., 2022), with a weight decay of 
1  × 10−5. We used a batch size of 12 samples, and stratified 
the batches to contain the same ratio of downfacing and 
upfacing samples as available in the aggregated training set. 
The learning rate (LR) followed a cyclic learning rate schedule 
(Smith, 2015; Smith and Topin, 2017; Smith, 2018). In each 
cycle, the learning rate was warmed up for the first 10% of 
training, held constant for 40% of training, then warmed 
down for the last 50%. During the LR warmup period, the 
momentum was decreased from a maximum of β1 = 0.98 to 
a base of β1 = 0.92, and then increased back to 0.98 during 
the LR warmdown period. Both the LR and momentum 
were increased and decreased with cosine annealing. The 
second moment parameter was held constant at β2 = 0.999 
throughout training. In the first cycle, the model was trained 
for 100 epochs with a maximum learning rate of LR = 0.012. 
In subsequent cycles, the training duration was progressively 
doubled and maximum learning rate halved. We trained two 
models: the Bifacing model was trained for three cycles (700 
epochs), whilst the Upfacing-only model was trained for 
two cycles (400 epochs). The model parameters were saved 
at the end of each cycle for subsequent analysis. We chose to 
stop the cyclic training process when the model’s validation 
performance had reached a plateau.

The Upfacing model was trained on MP:sta↑and GP:sta↑ 
datasets, which contain only upfacing Sv recordings. The Bifacing 
model was trained on the MP:mob↓ dataset in addition to the 
MP:sta↑ and GP:sta↑ datasets. To address the smaller size of 
the GP:sta↑ dataset, we upsampled it by presenting echograms 
drawn from it twice per epoch instead of once (for both models).

The model architecture and training hyperparameters 
were each selected over a series of manual searches against the 
validation partition with short training durations of 5 or 20 
epochs.

The network was trained using PyTorch 1.2.0 and CUDA 10.2. 
The model training and testing were done on the DeepSense high 
performance computing cluster with each training cycle or test 
using a 20 Core IBM Power8NVL 4.0 GHz compute node with 
512 GB of RAM and a pair of NVIDIA Tesla P100 GPUs with 
16  GB of GPU memory.

The Echofilter model can be trained using the command 
echofilter-train, with training parameters set at the 
command prompt.

3.6 Model Output Post-Processing
The neural network model is configured to generate predictions 
for each output type at the pixel level. That is to say, for each 
pixel in the input echogram, the network predicts a set of output 
variables at that particular pixel. For the passive data and bad 

data periods, we convert this 2-D output into a 1-D time series 
by taking the log-avg-exp over the depth dimension (Lowe et al., 
2021).

We converted the model’s output into lines as follows. For each 
boundary line, our model predicts the probability that each pixel 
is the location of said boundary. We integrated this probability 
across depth to create a cumulative probability density estimate, 
and identified the depth at which the cumulative probability 
exceeded 50%. In so doing, we generate a boundary depth 
prediction for every ping.

For the purposes of the machine learning model, all salient 
information needed to produce its outputs is contained in data 
at, or immediately surrounding, the water column. However, 
some echosound recordings have much greater range than this, 
extending out beyond the water column with a large number 
of samples. In order to put the echogram into the network, we 
scale the depth dimension down to 512  pixels. For echograms 
much larger than the water column, this step incurs a loss of 
information, since the water column may occupy only a small 
fraction of the 512 pixel resolution.

In order to alleviate this issue, the Echofilter protocol may run 
the echogram through the network twice, once zoomed out and 
once zoomed in on the water column. In the first instance, the 
echogram is “zoomed out” to the maximum extent and scaled 
down to 512 pixels. The depth of the seafloor or sea surface line is 
noted (the choice of line depending on echosounder orientation), 
and used to estimate the extent of the water column. Using a 
robust estimate of the standard deviation of depths in this line, 
we set our limit to be 4 standard deviations out from the mean 
of the line, or the furthest extent of the line, whichever is least 
distal. For upfacing recordings, we zoom in on the range from 
the deepest recording up to this depth minus an additional 2 m. 
For downfacing recordings, we zoom in on the range from the 
shallowest recording depth down to this depth plus an additional 
2 m. After cropping the echogram down to this range of depths, 
we scale it down to 512 pixels and present it to the network again. 
The output from the second, “zoomed-in” presentation is used 
to determine the final entrained-air, surface/seafloor lines and 
other outputs.

This “zoom+repeat” technique provides gains (see Section 
4.1.2), but we expect it to be needlessly expensive when only a 
small fraction of the echogram is outside the water column. For 
this reason, we only perform the second presentation if more 
than 35% of the echogram would be cropped out. This setting can 
be controlled with the ––autozoom-threshold argument 
to Echofilter.

In our analysis, we observed that Echofilter’s predictions 
of the locations of “bad data” were not sufficiently accurate. 
Furthermore, the mask can include a large number of small 
disconnected areas, which results in a inconveniently large 
number of regions to import into Echoview. In order to counter 
this, we can merge together regions with small gaps in between 
them, and impose a minimum size threshold on regions to be 
included in the output. We merged together consecutive passive 
regions annotations provided by the model with a gap smaller 
than 10 pings, and similarly for bad-data period labels. Any 
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remaining regions shorter than 10 pings in length were omitted 
from the final output. For bad data patches, any patch with an 
area smaller than 25 ping-metres was omitted from the final 
output. In extremis, we can omit all bad-data annotations from 
Echofilter’s region outputs.

An alternative solution to noisy outputs is to spatially smooth 
the output probabilities. We can apply a Gaussian smoothing 
kernel across each output plane before converting the logits into 
probabilities, and subsequently into lines and regions. However, 
we did not find this process yielded better results.

Lines and regions produced by Echofilter are exported into 
Echoview line (EVL) and region (EVR) files so they can be 
imported into Echoview. Additionally, the Echofilter command 
line supports saving lines and regions directly into the EV file 
which it is processing (Windows  OS and a licensed copy of 
Echoview required), removing the subsequent step of manually 
importing the files.

Inference using a pretrained model can be performed on EV 
(Windows-only) or CSV files with the command echofilter. 
Pre-processing and post-processing options can configured be 
set at the command prompt.

3.7 Performance Quantification
To compare the quality of the outputs from the Echoview 
algorithm and our Echofilter models, we used a selection of 
metrics to quantify their performances. The results shown 
in Section 4.1 were determined by using these performance 
measurements on the test partition of each dataset. The test 
partition was neither seen by the model during training, nor used 
to optimize the model architecture and training process.

3.7.1 Intersection-Over-Union
The model’s output was evaluated using the intersection-over-
union score (IoU), also known as the Jaccard index metric 
(Jaccard, 1912), and Jaccard similarity coefficient score. This 
metric is commonly used to evaluate the performance of image 
segmentation models within the field of computer vision. The 
IoU of two masks is calculated by assessing their overlap; it is 
the ratio of the size of the intersection of the two masks against 
their union:

 IoU annotated predicted)( ,
( )
(

=
∩Area annotated predicted

Area annootated predicted∪ )
.  

(1)

For this study, one mask identifies the data marked as “good” 
by a human annotator, and the other mask is the data marked 
as “good” by the model. A higher IoU is better, indicating the 
two masks are better aligned. We chose to use this performance 
metric (instead of accuracy, etc.) because it is robust against 
padding the echogram with irrelevant range outside of the water 
column (below the seafloor for downfacing recordings, or above 
the sea surface for upfacing recordings).

For the MP:sta↑ and GP:sta↑ datasets, the IoU measurements 
we report are the total area of the mask intersections across 
the whole test set, divided by the total area of the union of 
the two masks (i.e. the division operation performed after 
the summation). For the MP:mob↓ dataset, the IoU reported 

is the average IoU over all the EV files in the test set (i.e. the 
division operation performed before the mean). In both cases, 
we determine the standard error (SEM) by considering the 
distribution of IoU scores over EV files. For any recording 
where the target mask is all marked as False (no good data), the 
intersection of the predicted area with the target area is always 
0, and any prediction from the model results in a anomalously 
minimal score. Consequently, we excluded examples where the 
target was an empty mask when measuring the SEM.

3.7.2 Mean Absolute Error
We performed further evaluation of the model’s outputs using 
the mean absolute error (MAE) performance metric. The MAE 
is defined as

 MAE = −
∀
Σ1n y ŷ

i
i i ,  (2)

where yi is the target value for the i-th ping, ŷi is the predicted 
value generated by the model, and n is the number of pings to 
average over. We applied the MAE to measure the quality of the 
output lines. In this context, the MAE corresponds to the average 
distance (across pings) of the model’s line from the target line. A 
smaller MAE is better, indicating the model’s line is (on average) 
closer to the target line.

When measuring the MAE of the lines, we excluded pings 
which were marked as being within a passive or bad data region 
in the target annotations. To find the overall MAE, for MP:mob↓ 
we determined the MAE within each file and averaged over files; 
for MP:sta↑ and GP:sta↑ we averaged over all pings across all files 
in the test set, weighting each ping equally.

Additionally, we report the standard error of the MAE. 
This is determined by computing the MAE for each test file, 
and measuring the standard error across these independent 
measurements.

3.7.3 Root-Mean-Square Error
We measured the root-mean-square error (RMSE) in a similar 
manner to the MAE. The RMSE is defined as

 RMSE = −
∀
Σ1 2

n
y ŷ

i
i i( ) ,  (3)

where yi is the target value for the i-th ping, ŷi
 is the predicted 

value generated by the model, and n is the number of pings to 
average over.

When measuring the overall RMSE on the test data, we 
first found the average MSE over the whole test set, then took 
the square root. Sample/file weighting, and standard error 
determination, was performed the same way as for the MAE.

3.7.4 Cumulative Error Distribution
We were particularly interested in how much human labour 
would be saved by the improvement in the annotations. There 
clearly must exist some error threshold below which errors in the 
annotation have no significant impact on downstream analysis 
and hence do not need to be fixed by the analyst. We speculate 
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that this error tolerance threshold may be at around 0.5  m 
to 1.0 m, since the lines are offset by 1.0 m before performing 
biological analyses to ensure all “bad data” is excluded. Hence we 
can crudely estimate what fraction of the model’s output needs to 
be adjusted by the analyst by considering what fraction of pings 
are within 0.5m or 1.0m of the target line.

Since we can not be sure what the appropriate error tolerance 
is — and the tolerable error threshold may vary depending on 
the application — we can evaluate the performance of the model 
over a range of potential tolerance values by considering the 
cumulative distribution of the absolute error. Such a plot shows 
the fraction of outputs which are within a certain absolute error 
threshold, and is similar to a receiver operating characteristic 
(ROC) curve. If we seek to optimize this curve without assigning 
any particular error tolerance threshold, we can consider the 
total area above the curve (the expected rejection rate over all 
error tolerance thresholds), which we seek to minimise. This area 
is precisely equal to the MAE metric.

3.7.5 Test Data Weighting
For the MP:mob↓ dataset, test recordings were taken from 
two held out transects — no recordings from these transects 
were presented during training. This allows us to evaluate the 
performance of the model at novel recording locations which 
the model has not seen before. Unfortunately, the protocol 
for annotating the seafloor was not consistent for the first 9 of 
the 17 MP:mob↓ surveys; hence we evaluated the seafloor line 
and overall IoU only on test data from the final 8 surveys. The 
entrained air, passive data collection, bad data periods, and bad 
data patches were evaluated on all 17 of the MP:mob↓ surveys.

For the MP:sta↑ and GP:sta↑ datasets, our target surface lines 
were generated with the Echoview surface line detector, followed 
by automated anomaly detection, as described in Section 3.2. 
However, in some cases the Echoview algorithm fatally failed 
to detect the water–surface boundary, placing the surface line 
impossibly close to the echosounder, or impossibly far away. 
When evaluating the surface line on the test set, we dropped 
recordings where the “target” surface line depth was outside the 
known range of low to high tide water depths for that recording 
site (Minas Passage: 28.5 m to 44 m; Grand Passage: 13.5m to 
20 m). This allowed us to evaluate the Echofilter model’s surface 
line predictions against sane target values, but this selectively 
removed almost all the occasions where the Echoview algorithm’s 
predictions were wrong, severely compromising our ability 
to evaluate the performance of the Echoview algorithm at 
generating the surface line.

4 RESULTS

We measured the performance of our models using coarse-
grained quantitative metrics (Section 4.1), and compared to the 
output of algorithms built into Echoview as a baseline. To further 
contextualise the level of performance attained by our models, 
we measured the level of agreement between expert annotators 
separately annotating the data (Section 4.2). We also evaluated 
the performance by detailed investigation with qualitative 
outputs (Section 4.3), and finally we evaluated the practical 

output of the model by measuring the amount of time taken to 
audit and correct the model output (Section 4.4).

4.1 Quantitative Evaluation
We evaluated the overall performance of our final model by 
comparing the final “good data” mask produced by the model 
with that of the target labels. The target mask indicates which 
values within the echogram should be included in biological 
analyses. This mask excludes all values above the entrained-
air line, below the seafloor line, during passive data collection 
regions, or marked as “bad data”. Our model produces outputs 
corresponding to each of these elements, and combining these 
outputs allows us to generate a final output mask. We measured 
the alignment between the two masks using the Intersection-
over-Union (IoU), described in Section 3.7.1.

For our purposes, the most important output from the 
Echofilter model was the entrained-air line, which provides 
segmentation between the air entrained into the water column, 
and the rest of the water column. To provide a human-
interpretable measurement of the error in the placement of 
this line, we measured the mean absolute error (MAE) and 
root-mean-square error (RMSE) between the depth of model’s 
entrained-air line and the target. See Section 3.7.2 and Section 
3.7.3 for more details.

Other outputs from the model were evaluated similarly, 
using the IoU, MAE, and/or RMSE. In all cases, we show the 
performance of the model on the test partition, which was held 
out during all stages of model development and training.

4.1.1 Performance Break-Down Across Outputs
We investigated the performance of the final Upfacing (@400 
epoch) and Bifacing (@700 epoch) models across all outputs 
produced by the network, and compared the quality of these 
outputs against the Echoview algorithm. The results were 
evaluated against the target annotations produced by a human 
expert, except for the surface line where the target was taken 
from the line produced by the Echoview algorithm but with 
anomalous values rejected (see Section 3.7.5).

We considered the IoU for each output, the results for 
which are shown in Table  2. The overall IoU compares 
the overall mask produced by removing pixels above the 
entrained-air line, below the seafloor line (if downfacing), 
during periods marked as passive data collection, and bad data 
annotations; we compare the mask obtained with the model 
against that from human annotation. For the entrained-air 
line, the IoU measurement considers the area beneath the 
entrained-air line — for upfacing recordings this extends to 
the echosounder, and for downfacing recordings it extends to 
the seafloor line provided by the expert’s annotation. Similarly 
the IoU measurement for the surface line extends from the 
surface to the echosounder, and is only measured for upfacing 
recordings. For the seafloor line, we compare the area from 
the seafloor line to the echosounder. For passive data region 
annotations, we compare the set of pings identified as passive 
by the model with the target annotations, performing a 1-D 
IoU calculation. The vertical bad data periods are measured 
in the same way as the passive data region annotations, using 
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a 1-D IoU. The IoU for the bad data patches is a comparison of 
the area marked as bad data by the model with a target mask 
indicating the locations of bad data patches.

We found the entrained-air and seafloor boundaries produced 
by both models had statistically significantly higher agreement 
with the human annotation than the lines produced by the 
Echoview algorithm (two-sided Wilcoxon signed-rank test, 
p<0.05). There was no significant difference between the outputs 
from the two models, except from the entrained-air line on 
MP:sta↑ where the magnitude of the difference in performance 
was small. Correspondingly, the quality of the overall output of 
the models were not significantly different from each other, but 
were significantly better than the Echoview algorithm.

The passive region annotations are highly accurate, reaching 
100% accuracy on MP:sta↑ and GP:sta↑. On the MP:mob↓ 
dataset, the Bifacing model attains an IoU of 99.78%.

The bad data period annotations were challenging for the 
model to replicate, attaining an IoU of only 40% on MP:sta↑ 
and 25% on GP:sta↑. The anomalous bad data patches were 
impossible for the network to learn with any meaningful 
reliability, with an IoU of ≤0.3%. The poor performance of both 
of these annotations yields an increase in performance when 
small outputs are ignored (as seen in Section 4.1.2). On GP:sta↑, 
the bad data period annotations are sufficiently poor to yield an 
increase in performance when they are dropped entirely (see 
Section 4.1.2).

We measured the mean absolute error (MAE) of the 
entrained-air, surface, and seafloor lines (described in Section 
3.7.2). As shown in Table 2, we found that the Bifacing model 
placed the entrained-air line on MP:mob↓ with only 0.325  m 
average error — a significant reduction (two-sided Wilcoxon 
signed-rank test, p<0.05) over the Echoview algorithm, which 

TABLE 2 | Final model performance (agreement with manual annotation) for each output.

MP:mob↓ MP:sta↑ GP:sta↑

 
Output Echoview

Echofilter 
Bifacing Echoview

Echofilter 
Upfacing

Echofilter 
Bifacing Echoview

Echofilter 
Upfacing

Echofilter 
Bifacing

Intersection-over-Union (%; larger is better)

Overall 96.80 ± 0.34 99.15 ± 0.08 90.41 ± 0.76 95.08 ± 0.34 94.91 ± 0.35 87.66 ± 1.05 92.10 ± 1.00 92.97 ± 1.00

Entrained-air 97.37 ± 0.31 99.11 ± 0.09 91.63 ± 0.72 96.05 ± 0.29 95.96 ± 0.28 89.06 ± 1.03 94.49 ± 0.50 94.95 ± 0.29

Surface – – 99.83 ± 0.05 99.82 ± 0.02 99.83 ± 0.02 – 98.59 ± 1.22 99.86 ± 0.01
Seafloor 99.33 ± 0.08 99.79 ± 0.03 – – – – –
Air–Seafloor 96.81 ± 0.34 99.16 ± 0.08 – – – – –
Passive – 99.78 ± 0.06 – 100.0 ± 0.00 100.0 ± 0.00 – 99.97 ± 0.01 100.00 ± 0.00

Bad data period – – – 40.58 ± 7.64 38.92 ± 7.42 – 24.68 ± 7.65 25.78 ± 8.07
Patch (anomaly) – 0.00 ± 0.00 – 0.30 ± 0.12 0.30 ± 0.11 – 0.20 ± 0.07 0.20 ± 0.07

Mean Absolute Error (m; smaller is better)

Entrained-air 1.178 ± 0.295 0.325 ± 0.031 2.187 ± 0.147 0.981 ± 0.044 1.005 ± 0.045 1.252 ± 0.198 0.577 ± 0.074 0.532 ± 0.031
Surface – – 0.062 ± 0.018 0.063 ± 0.007 0.062 ± 0.007 0.235 ± 0.232 0.024 ± 0.002
Seafloor 0.279 ± 0.032 0.089 ± 0.012 – – – – – –

Root-Mean-Square Error (m; smaller is better)

Entrained-air 6.436 ± 0.390 1.281 ± 0.064 4.275 ± 0.196 2.181 ± 0.085 2.228 ± 0.088 2.995 ± 0.508 1.244 ± 0.137 1.104 ± 0.060
Surface – – 1.323 ± 0.140 0.149 ± 0.020 0.134 ± 0.019 – 3.019 ± 1.073 0.035 ± 0.003
Seafloor 2.017 ± 0.187 0.292 ± 0.024 – – – – – –

Proportion of pings where line placed within 0.5 m of target (%; larger is better)

Entrained-air 71.24 ± 1.60 88.30 ± 0.82 52.67 ± 2.09 61.28 ± 1.26 61.11 ± 1.27 61.18 ± 2.58 69.85 ± 2.54 70.17 ± 1.47
Surface – – 99.39 ± 0.15 99.67 ± 0.27 99.68 ± 0.26 – 99.44 ± 0.57 99.98 ± 0.01

Seafloor 89.27 ± 1.02 97.26 ± 0.70 – – – – – –

Proportion of pings where line placed within 1.0 m of target (%; larger is better)

Entrained-air 80.20 ± 1.33 93.09 ± 0.59 58.34 ± 1.99 74.76 ± 0.97 74.33 ± 1.01 69.10 ± 2.70 83.70 ± 1.84 84.93 ± 0.92

Surface – – 99.44 ± 0.15 99.87 ± 0.15 99.88 ± 0.15 – 99.46 ± 0.57 100.00 ± 0.00
Seafloor 95.30 ± 0.49 98.75 ± 0.53 – – – – – –

Proportion of pings where line placed within 2.0 m of target (%; larger is better)

Entrained-air 87.58 ± 1.01 96.46 ± 0.38 68.08 ± 1.80 86.50 ± 0.66 86.12 ± 0.69 80.61 ± 2.26 93.33 ± 1.17 94.20 ± 0.45

Surface – – 99.52 ± 0.15 99.93 ± 0.11 99.94 ± 0.10 – 99.46 ± 0.57 100.00 ± 0.00
Seafloor 98.48 ± 0.18 99.78 ± 0.16 – – – – – –

The performance of the final Upfacing (@400 epoch) and Bifacing (@700 epoch) models, with thresholded zoom+repeat, merging/ignoring small output regions; compared against 
the performance of the Echoview algorithm as a baseline. Bold: best model. Italic: no significant difference from best (two-sided Wilcoxon signed-rank test, p>0.05).
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had over three times as much error on average. For the MP:sta↑ 
and GP:sta↑ datasets, the two Echofilter models had comparable 
performance, a significant reduction in error against the 
Echoview algorithm baseline which had more than twice the 
error of Echofilter on both the upfacing, stationary datasets. Our 
findings when evaluating the entrained-air lines using the RMSE 
metric, and the proportion of pings within fixed distances of the 
target lines, were the same as with MAE.

The larger absolute error on the GP:sta↑ dataset (0.53  m to 
0.58 m) and MP:sta↑ dataset (1.0 m) is indicative of the increased 
difficulty intrinsic to these datasets collected at sites where 

the persistence, depth-of-penetration, variability of depth-of-
penetration, and proportion of water column contaminated 
by entrained air exceeded that typically found at the transect 
locations sampled by the MP:mob↓ surveys. In particular, we 
note that the average and standard deviation of the depth-of-
penetration for the entrained air was (12.4 ± 4.8) m for MP:sta↑, 
(6.7 ± 2.1) m for GP:sta↑, but only (2.4 ± 2.2) m for MP:mob↓. 
This corresponds to (34 ± 13) % of the water column for MP:sta↑, 
(41 ± 12) % for GP:sta↑, but only (6.2 ± 5.3) % for MP:mob↓.

As shown in Figures 3A–C, the cumulative error distribution 
curve produced by Echoview is dominated by Echofilter for all 
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FIGURE 3 | Cumulative distribution for the absolute error of entrained-air (A–C) and seafloor (D) lines generated by the models (Echoview: red; Upfacing@400ep: 
magenta; Bifacing@700ep: blue). This indicates (on the y-axis) the fraction of pings where the output line was within a given threshold distance (x-axis) of the target 
line. (A) Error in entrained-air line on MP:sta↑. (B) Error in entrained-air line on GP:sta↑. (C) Error in entrained-air line on MP:mob↓. (D) Error in seafloor line on MP:mob↓.
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values in the range of interest. Echoview appears to outperform 
Echofilter when using very narrow error thresholds (error < 0.2 m; 
the easiest 50% of the data), however this is an artifact of the 
manual data annotation process, in which Echoview was used to 
generate initial annotations which were then corrected as needed 
by a human expert.

As shown in Table 2, we found that the Bifacing model placed 
the seafloor line with very low error (only 0.09 m on average) on 
the MP:mob↓ test set. Again, this was significantly lower than the 
Echoview algorithm, for which the MAE was three times higher 
(0.28 m). Similar results were seen with the RMSE and proportion 
of pings within a tolerance threshold. As shown in Figure 3, the 
Echofilter cumulative error distribution for the seafloor line 
dominates Echoview. We note there is a step jump in Echofilter 
model performance at 1.0 m error; this is caused by inconsistencies 
in the training data annotation in the first 9 surveys which impacted 
the model fit (evaluated only on the last 8 surveys).

For the surface line annotation, we find that the Echofilter 
models have a MAE comparable to Echoview on MP:sta↑ and 
outperform Echoview when considering the RMSE and fraction 
of pings within 0.5 m to 2.0 m error threshold. This is because 
the Echofilter models do not produce the anomalous surface 
line depths seen with the Echoview line generation, which we 
removed from our training and target lines. On GP:sta↑, the 
Bifacing model produced better surface lines than the Upfacing 
model. Manual inspection of the results demonstrates that the 
Upfacing model is sometimes confused by reflections in the 
additional range of these recordings (following the erroneous 
training targets generated by Echoview), whilst the Bifacing 
model was not confused by these reflections.

4.1.2 Impact of Post-Processing Steps
We evaluated the performance of the final Upfacing and Bifacing 
models before and after each post-processing step impact 
described in Section 3.6. Our results are shown in Table 3.

Compared with applying the model only once on the 
full echogram, using the two step “zoom+repeat” stimulus 

presentation provided a statistically significant increase in the 
entrained-air line placement as evaluated by the MAE (two-
sided Wilcoxon signed-rank test, p<0.05) on all datasets, and 
for both the Upfacing and Bifacing model. The overall IoU also 
significantly increased, except for the Bifacing model on MP:sta↑ 
where “zoom+repeat” caused a very small, but statistically 
significant, decrease.

We also considered using a threshold of 0.35 to determine 
when to do the zoom+repeat step, following our assumption 
that a second application of the model on a zoomed-in 
echogram is not necessary when less than 35% of the echogram 
data is outside the surface–seafloor extent. We found that 
using this threshold had no impact on the performance of the 
models on the MP:mob↓ and GP:sta↑ datasets, where the range 
of the data extended far outside the surface–seafloor extent 
and hence zoom+repeat was de facto always applied. On the 
MP:sta↑ dataset, where the recording range was not much 
further than the distance from seafloor to sea surface, there was 
a significant decrease in performance when a threshold was 
used to determine when to apply a second round of the model. 
This suggests that the zoom+repeat protocol should always 
be used in order to yield the best annotation with the model. 
Nonetheless, the rest of our results present in this paper use the 
(faster to perform) thresholded zoom+repeat, with a threshold 
of 0.35.

The remaining optional post-processing steps were considered 
with thresholded zoom+repeat in place. We found no significant 
differences in the overall IoU when small regions were merged 
together or dropped from the output (changing the way regions 
are handled has no effect on the entrained-air line placement). 
Omitting bad data regions and patches entirely had a positive 
impact on the overall performance on the GP:sta↑ data, but a 
negative impact on MP:sta↑ data. This was because the bad data 
period predictions (as seen in Table  2) were notably worse on 
GP:sta↑ than MP:sta↑. There was no impact on MP:mob↓ data 
because the model did not predict any bad data regions on this 
test dataset.

TABLE 3 | Impact of post-processing steps on the model performance metrics.

Overall IoU (%) Entrained-air MAE (m)

Model MP:mob↓ MP:sta↑ GP:sta↑ MP:mob↓ MP:sta↑ GP:sta↑

Echoview algorithm 96.80 ± 0.34 90.41 ± 0.76 87.66 ± 1.05 1.178 ± 0.295 2.187 ± 0.147 1.252 ± 0.198

Upfacing w/o zoom – 95.06 ± 0.34 88.06 ± 3.88 – 0.987 ± 0.045 0.629 ± 0.076
w/zoom+repeat – 95.11 ± 0.35 92.09 ± 1.01 – 0.950 ± 0.041 0.574 ± 0.071
w/thresholded z+r – 94.27 ± 0.46 92.07 ± 1.01 – 0.981 ± 0.044 0.577 ± 0.074
+ ignore small regions – 95.08 ± 0.34 92.10 ± 1.00 – 0.981 ± 0.044 0.577 ± 0.074
+ ignore all “bad data” – 94.77 ± 0.44 93.01 ± 0.76 – 0.981 ± 0.044 0.577 ± 0.074
+ logit smoothing – 94.27 ± 0.46 92.48 ± 0.86 – 1.099 ± 0.046 0.623 ± 0.095

Bifacing w/o zoom 98.59 ± 0.09 94.90 ± 0.35 88.35 ± 3.93 0.402 ± 0.030 1.004 ± 0.045 0.589 ± 0.047
w/zoom+repeat 99.16 ± 0.08 94.86 ± 0.40 92.95 ± 1.01 0.325 ± 0.031 0.979 ± 0.044 0.532 ± 0.031
w/thresholded z+r 99.16 ± 0.08 94.90 ± 0.35 92.95 ± 1.01 0.325 ± 0.031 1.005 ± 0.045 0.532 ± 0.031
+ ignore small regions 99.15 ± 0.08 94.91 ± 0.35 92.97 ± 1.00 0.325 ± 0.031 1.005 ± 0.045 0.532 ± 0.031
+ ignore all “bad data” 99.15 ± 0.08 94.74 ± 0.42 93.45 ± 0.64 0.325 ± 0.031 1.005 ± 0.045 0.532 ± 0.031
+ logit smoothing 98.90 ± 0.08 94.35 ± 0.43 93.12 ± 0.67 0.385 ± 0.030 1.103 ± 0.051 0.570 ± 0.047

Bold: best pre-processing option. Italic: no significant difference from best (two-sided Wilcoxon signed-rank test, p>0.05).
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We considered the effect of logit smoothing on the model’s 
final output by applying this postprocessing step, in addition to 
thresholded zoom+repeat and ignoring all bad data annotations, 
with a Gaussian kernel size of 1. We found that logit smoothing 
had a significant negative impact on the accuracy of the 
entrained-air line placement, and on the overall mask output, for 
all datasets.

4.1.3 Impact of Model Training Duration
We investigated the impact of training time on the final model 
outputs. We compared the output of each of the models at the 
end of each stage of the cyclic training process. For this analysis, 
we used thresholded zoom+repeat, and merged/ignored small 
regions in the model output.

As shown in Table  4, we found that further training cycles 
improved the performance on MP:sta↑ and MP:mob↓, though with 
diminishing returns. Additional training reduced the performance 
on GP:sta↑, but the reduction was not statistically significant.

4.2 Inter-Annotator Agreement 
Benchmarking
The extent to which air is entrained in the water column is 
not observed directly, and can only be estimated based on the 
echosounder recordings. With training and experience, human 
annotators can learn which datapoints correspond to entrained 
air and which to fish populations within the water column. 
However, without a ground truth measurement, the annotations 
are subjective and will differ between annotators.

With this in mind, it is difficult to know how well we could 
expect an ideal model to perform at the task. It is infeasible to 

expect perfect agreement between the model and the human 
annotations, since human annotators do not always agree 
amongst each other and are not necessarily consistent in their 
choice of line placement. We endeavoured to quantify how well 
our model performs by measuring the agreement between two 
human annotators, which acts as a baseline to estimate the Bayes 
error rate.

We selected 10 EV files from the Grand Passage stationary-
upfacing dataset (GP:sta↑), ensuring that the selected files 
were composed of sufficiently complex data so that any 
differences in line placement between each annotator would be 
highlighted. Annotations were generated by Echoview using the 
preexisting workflow. The Echoview annotations were edited 
independently by JD and LPM in order to create two sets of 
finalized annotations for all 10 files. We then created annotations 
using Echofilter (models Upfacing@400ep and Bifacing@700ep, 
using thresholded zoom+repeat, and dropping small regions). 
While both annotators are experts in this field, JD was the most 
experienced at handling this data — her annotations constituted 
the majority of the annotations used to train the models. 
Consequently, we treated JD’s annotations as the ground truth 
labels, and measured the performance of the other annotation 
methods in comparison to her labels.

As shown in Table  5, we found that the level of agreement 
in placement of the entrained-air line between Echofilter and JD 
exceeded that of LPM, with higher IoU and a smaller average 
distance between the line depths, though the difference was not 
statistically significant (p>0.05). This suggests our model outputs 
have an accuracy comparable to human-level performance at 
this task.

TABLE 5 | Comparison of agreement between several annotation sources.

                                      IoU (%; larger is better) Δ Entrained-air (m)

Annotator Overall Entrained-air Bad data period Patch MAE RMSE

Human expert (LPM) 90.7 ± 1.2 92.4 ± 0.9 97.8 ± 25.8 0.29 ± 0.10 0.86 ± 0.10 1.63 ± 0.17

Echoview 88.7 ± 1.4 90.9 ± 1.1 – – 1.05 ± 0.12 2.01 ± 0.19
Echofilter: Upfacing 90.5 ± 2.9 93.2 ± 0.9 70.7 ± 24.0 0.32 ± 0.09 0.76 ± 0.05 1.25 ± 0.11
Echofilter: Bifacing 91.3 ± 1.3 93.0 ± 1.0 92.8 ± 25.5 0.38 ± 0.12 0.78 ± 0.04 1.27 ± 0.09

We compared several annotation methods against expert labels created by JD. The intersection-over-union (IoU) across all recordings is shown, in addition to the mean absolute 
error (MAE) and root-mean-square error (RMSE) for the placement of the entrained-air separation line (n = 10, ± inter-recording standard error). Note that JD used Echoview to 
generate seed annotations for refinement into finalized annotations. Bold: model with best agreement with target (JD) annotations. Italic: no significant difference from best (two-
sided Wilcoxon signed-rank test, p>0.05).

TABLE 4 | Performance of models after each training cycle (different total training durations). 

Overall IoU (%) Entrained-air MAE (m)

Model MP:mob↓ MP:sta↑ GP:sta↑ MP:mob↓ MP:sta↑ GP:sta↑

Upfacing 100ep – 95.05 ± 0.33 93.32 ± 0.87 – 1.001 ± 0.046 0.520 ± 0.033
400ep – 95.08 ± 0.34 92.10 ± 1.00 – 0.981 ± 0.044 0.577 ± 0.074

Bifacing  100ep 98.93 ± 0.10 94.93 ± 0.32 93.52 ± 0.69 0.369 ± 0.034 1.036 ± 0.047 0.513 ± 0.032
400ep 99.02 ± 0.09 94.97 ± 0.33 93.18 ± 0.92 0.329 ± 0.028 1.022 ± 0.047 0.520 ± 0.032
700ep 99.15 ± 0.08 94.91 ± 0.35 92.97 ± 1.00 0.325 ± 0.031 1.005 ± 0.045 0.532 ± 0.031

Bold: best training duration. Italic: no significant difference from best (two-sided Wilcoxon signed-rank test, p>0.05).
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FIGURE 4 | Entrained-air lines as defined by Echofilter (Upfacing@100ep: pink; Bifacing@100ep: blue) and by Echoview (red). (A) A 5-minute data collection period 
during which entrained air does not penetrate deeply into the water. The Echoview line is further from the entrained air than the Echofilter lines, leaving greater 
amounts of white space and thereby unnecessarily excluding more water column from analyses. (B) Two 5-minute data collection periods during which the returns 
from entrained air are more depth dynamic. The Echofilter placement of the entrained-air lines more closely reflect the penetration of the entrained air in terms of 
depth and width. In the horizontal dimension, the Echofilter lines are appropriately placed further from the entrained air in the particularly steep sections. Note that 
Echofilter entrained-air lines as defined by each model (Bifacing@100ep and Upfacing@100ep) are essentially equivalent although not identical. Data: stationary data 
with echosounder in upfacing orientation, recorded for 5 minutes every half hour at the Minas Passage site.

FIGURE 5 | Echogram demonstrating that the entrained-air line as calculated by the two Echofilter models (Upfacing@400ep: pink; Bifacing@700ep: blue) is a 
pronounced improvement over that produced by Echoview (red line), and much closer to the target line created by the analyst (black). Data: stationary data with 
echosounder in upfacing orientation, recorded for 5 minutes every half hour at the Minas Passage site.
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FIGURE 6 | Example showing appropriate and adequate placement of the surface line by Echofilter models: Upfacing@100ep (pink) and Bifacing@100ep (blue) 
indicated at A. The line placements include the 1 m offset required to eliminate bias from acoustic beam deadzone. For reference, the surface line, without offset, 
as defined by Echoview is also shown (red; line B). Data: stationary data with echosounder in upfacing orientation, recorded for 5 minutes every half hour at the 
Minas Passage site.

FIGURE 7 | Passive data regions (black vertical bars) as identified by Echoview algorithms. Note the white vertical lines marked by yellow arrows within the black 
passive data regions. The white vertical lines are single pings or a few pings misclassified by the Echoview algorithm. Data: stationary data with echosounder in 
upfacing orientation, active data recorded for 5 minutes and passive data for one minute every half hour at the Minas Passage site.
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4.3 Manual Evaluation of Model Outputs
Manual investigation of the Echofilter results were carried out by 
JD and LPM on a Windows 10 operating system, using Echoview 
10, or Echoview 11 newly released at the time of testing. The 
performance of Echofilter was evaluated on 24 Echoview files, 
selected from the test partition as described in Section 2.

During model development, a series of iterative testing and 
upgrades to Echofilter was undertaken. Echofilter was run on 
the entire set of test files, applying both models (Bifacing and 
Upfacing, with thresholded zoom+repeat, and logit-smoothing) 
to the data for comparative purposes. The results were examined 
for adequacy and appropriateness of the placement of lines (sea 
surface and entrained-air), the identification of the passive data 
collection periods and identification of bad data regions. Issues 
with the outputs were investigated in detail, and used to make 
changes to the model architecture design, training paradigm, 
or to the format of input and target data provided to the model 
during training. This process was iterated until any additional 
improvements were marginal and inconsequential.

By the end of testing and upgrades to the models, both models 
(Bifacing and Upfacing) produced appropriate automated 
initial placement of the boundary lines. Most importantly, the 
model placement of entrained-air boundary lines were visibly 
superior to the line placements as produced by the Echoview 
algorithms, as shown in Figure 4. The model results proved to 
be much more responsive than the Echoview algorithms to the 
entrained-air ambit characteristics across the varying tidal flow 

rates (Figure 4). In some cases, the automated prediction of the 
entrained-air line placement as produced by Echofilter were far 
superior to that produced by Echoview; see Figure 5. Note that 
Echofilter entrained-air lines as defined by each model (Bifacing 
and Upfacing) were essentially equivalent, although not identical.

As shown in Figure  6, the Echofilter models produced 
appropriate and adequate automated placement of the surface 
line, including a user-defined offset; in this case 1 m. Likewise, 
the Echofilter models produced appropriate and adequate 
identification of the passive data regions that will be excluded 
from biological analyses. We found the Echofilter passive data 
region identification was superior to the Echoview algorithms 
implemented to automate the identification of passive data 
regions. The Echoview algorithms would, not uncommonly, 
exclude a ping or few pings from within the passive data region, 
thereby inappropriately designating those pings for inclusion in 
biological analyses, as shown in Figure 7. No such occurrences 
were noted in the Echofilter results (e.g. Figure 8).

In addition to the passive data regions, there are two additional 
types of bad data regions that are not uncommon to echosounder 
data. The first type, is a contiguous time period marked to be 
removed from analysis. As shown in Figure  8, these bad data 
regions are identified by Echofilter when the position of the 
entrained-air line resolves to a position intersecting or extending 
below the bottom line, whether that line is the seafloor or the 
line designating the transducer nearfield exclusion line. In other 
words, when the position of the entrained-air line indicates that 

FIGURE 8 | Example of passive data regions (pink bars) and bad data periods (green bars) defined by Echofilter. Echofilter successfully identified the contiguous 
pings of passive data collection. Bad data periods designated by Echofilter were pings where the entrained-air line (pink or blue lines in this example) intersects with 
the bottom analytical line (in this case the line designating the outer boundary of the transducer nearfield). Although these cases meet the criteria, in each case the 
hydroacoustic analyst would designate the entire recording period as a bad data region due to the strength, penetration, and persistence of entrained-air signals. 
Data: stationary data with echosounder in upfacing orientation, active data recorded for 5 minutes and passive data for one minute every half hour at the Minas 
Passage site.
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the entrained air has penetrated the entire depth of the water 
column. Such occurrences are not uncommon in the Minas 
Passage and Grand Passage datasets, sometimes occurring for just 
a few pings and other times the penetration occurs throughout 
an entire 5-minute data collection period. The single criteria of 
intersecting or penetrating below the bottom line is insufficient 
for defining all pings that should be excluded in their entirety. 
Figure 8 provides an example of just such a case: less than 50% 
of the water column remains after the entrained-air exclusion. 
In that case, if the goal of the analyses is to understand metrics 

within the full water column, that data collection period would 
need to be excluded in its entirety.

The second type of bad data region, a “patch” of bad data, can 
be characterized as forming randomly shaped discrete patches. 
Within the original test segment of 24 files, only three had 
occurrences of the patch-type bad data region. Two additional 
EV files containing patch-type bad data regions were identified 
from the validation and training segments for manual inspection 
of the patch-type results only. Both Echofilter models performed 
poorly, generating false positives as illustrated in Figure 9.

4.4 Time-Savings Analysis
We sought to evaluate the amount of time-savings that the 
Echofilter model would offer, relative to the existing workflow 
using Echoview algorithms. Five of the Echoview files from the 
MP:sta↑ test partition were selected for a time test. The files were 
selected to represent each tide and phase combination: flooding 
spring tide, ebbing spring tide, flooding neap tide, and ebbing 
neap tide, plus one file with especially noisy data for which 
neither Echoview or Echofilter would likely render a well-placed 
entrained-air line. Annotations were initialized twice: once using 
the preexisting workflow utilizing Echoview algorithms, and 
once using Echofilter with the Upfacing@100ep model, with 
logit-smoothing enabled. The initial entrained-air line in each of 
the ten files was audited and edited by the hydroacoustic analyst 

FIGURE 9 | Example of false positive “patch” bad data regions identified by Echofilter. (A) A 5-minute section of echogram with passive data regions (pink 
rectangles) on either side. (B) Enlargement to show the contents within each patch. Empty patches are false positive. The patch containing color samples within it 
would be classified as fish by the hydroacoustic analyst. It was likely identified as a bad data region by Echofilter because of its nearly horizontal position. The data 
on which the models were trained contain occurrences of unidentified interference which appear as horizontal lines. Those were classified as bad data regions by 
the analyst prior to training. Both models (Bifacing@100ep and Upfacing@100ep) designate true and false positives, but differently. Bifacing@100ep results appear 
to include fewer false positives. Data: stationary data with echosounder in upfacing orientation, active data recorded for 5 minutes and passive data for one minute 
at Minas Passage Site.

TABLE 6 | Results from the time-to-edit experiment.

Edit order Edit time (MM:SS)

Tide Phase Echoview Echofilter Echoview Echofilter Reduction

Spring Flood 2 6 8:06 4:04 50%
Spring Ebb 3 4 8:00 4:04 49%
Neap Flood 8 7 8:18 4:30 46%
Neap Ebb 1 5 7:08 3:57 45%
Bad file 9 10 4:28 1:51 59%

Overall Mean     7:12 3.42 49%

 A hydroacoustic analyst used the entrained-air lines produced by either Echoview or 
Echofilter to seed their annotations. We compare the amount of time needed to convert 
the seed lines into “correct” annotation lines. Bold: best model (shortest duration).
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(JD), while recording the amount of time taken to do so. We 
randomized the order in which tasks (file and seed annotation 
source) were completed, except the especially noisy “bad file” 
which was evaluated later.

Our results, shown in Table  6, demonstrate that using the 
annotations generated by Echofilter results in less time taken 
for the human annotator to complete their task. For typical data 
files, the time taken to finalize annotations was consistently 45%–
50% shorter when using annotations produced by Echofilter as 
the seed instead of annotations produced by Echoview. For an 
especially noisy file, the reduction in time was even larger, at 
59%. The reduction in time was statistically significant (p<0.001; 
paired Student’s t-test).

5 DISCUSSION

5.1 Impact of Echofilter Model
We have described the implementation of a deep learning 
model, Echofilter, which can be used to generate annotations 
to segment entrained air appearing in hydroacoustic recordings 
at tidal energy sites. Our goal was to produce an automated, 
model-based approach to the placement of a line appropriately 
defining the boundary between that portion of the water column 
contaminated by acoustic returns from entrained air, and that 
portion of the water column appropriate for biological analyses. 
This was motivated by the need for reliable, timely analyses 
and subsequent reporting to assist regulators, developers, and 
stakeholders in understanding the risks to fish imposed by the 
deployment of tidal energy devices into marine ecosystems.

We found the deep learning models we implemented produced 
significantly and appreciably better placement of the entrained-
air line than the Echoview algorithms. For mobile, downward-
facing recordings, the average error was 0.33 m, less than a third 
of Echoview’s 1.2 m average error. For stationary, upward-facing 
recordings, the average error was 0.5 m to 1.0 m depending on 
dataset, consistently less than half the error seen with Echoview 
algorithms (1.2 m to 2.2 m). Furthermore, the surface, seafloor, 
and passive region placement were also superior to those 
produced using Echoview. The model’s overall annotations had 
a high level of agreement with the human segmentation, with 
an intersection-over-union score of 99% for mobile downfacing 
recordings and 92% to 95% for stationary upfacing recordings. As 
such, Echofilter provides a complete automated line placement 
and passive data identification methodology.

The most challenging segmentation line to place correctly 
is the entrained-air line, which currently can require time-
consuming manual placement due to the lack of a well-placed 
automated solution. We found that the increase in accuracy of 
the automated placement of the entrained-air line provided by 
Echofilter corresponded to a 50% reduction in the time required 
for a hydroacoustician to audit and correct the line placement. 
Our quantitative analysis has shown that the Echofilter models 
produce lines which are closer (in distance) to the line placement 
defined by the human expert. Additionally, we note that the 

ML models are more sensitive to the fine-scale nuances in the 
boundary position of the entrained air; when the model places 
the line incorrectly, the errors tend follow the correct shape 
of the entrained air but are offset by some amount, and hence 
require only a simple, coarse edit to shift the line in some region 
to the correct offset. In contrast, when the Echoview algorithm is 
incorrect, the shape is incorrect and corrections to the line involve 
time-consuming fine-scale edits instead. Since coarse-scale edits 
are less cognitively taxing and far fewer edits are required, far 
less analyst fatigue is invoked during manual corrections of the 
model-placed entrained-air line, thereby allowing the analyst 
to bring the full-force of their intellect, training, and analytical 
skills to modifying placement of the line segments as necessary. 
Additionally, the reduction in the number of fine-scale edits 
provides the opportunity for an increase in the standardization 
and repeatability of line placement, within an analyst’s work and 
among analysts.

Machine learning applied to the hydroacoustic data by which 
we quantify fish distribution and abundance has garnered 
improvements to the work flow and increased the efficiency 
of the work by 50%, improvements that haven’t been achieved 
any other way. The machine learning contribution to assessing 
the ecological impacts of introducing marine renewable energy 
devices into the marine habitat is the improved analytical 
consistency and substantial improvements in the timeliness of 
analyses and subsequent reporting.

5.2 Limitations Associated With Echofilter
We developed Echofilter with the goal of increasing the efficiency 
and standardization of the post-processing of hydroacoustic 
data collected in dynamic marine environments such as tidal 
channels. The model was thoroughly evaluated on data recorded 
from upward-facing stationary echosounders at two tidal energy 
demonstration sites in the Bay of Fundy. The models have not 
been evaluated on data collected in other regions, with other 
instrumentation, or in other deployment configurations. 
Consequently, the performance of Echofilter on data collected 
under conditions that differ substantially from those used for 
model development may be heavily impacted and require some 
level of re-training to ensure accurate results, which is a non-
trivial procedure.

In addition to the entrained-air boundary line, Echofilter 
predicts the depths of the surface (for upfacing recordings) and 
the seafloor (downfacing). Our performance metrics indicate 
that these lines are all placed accurately, however we have 
not thoroughly inspected the model’s output on downfacing 
recordings and can not confirm the integrity of the seafloor line.

In addition to the lines, our model attempts to predict regions 
which should be excluded from biological analyses. However, 
it was not possible for the model to learn these annotations 
with sufficient accuracy to be usable for downstream tasks. 
Consequently, it is not possible to automate away a need for 
manual inspection of the data. A hydroacoustician must always 
inspect the recordings themselves in order to annotate regions to 
exclude from analysis, and adjust lines as necessary.
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5.3 Accessing Echofilter
To ensure the broader community can utilize our model described 
in this paper, we have released the final implementation, 
Echofilter, under the AGPLv3 license. Python source code and a 
stand-alone Windows executable are available at https://github.
com/DeepSenseCA/echofilter. Additionally, the command line 
interface (CLI) and application programming interface (API) 
documentation is available at https://DeepSenseCA.github.io/
echofilter/.

We hope this tool will prove useful to tidal energy researchers, 
and the wider hydroacoustic community.
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Understanding the spatiotemporal distributions of migratory marine species at marine
renewable energy sites is a crucial step towards assessing the potential impacts of tidal
stream turbines and related infrastructure upon these species. However, the dynamic
marine conditions that make tidal channels attractive for marine renewable power
development also make it difficult to identify and follow species of marine fishes with
existing technologies such as hydroacoustics and optical cameras. Acoustic telemetry
can resolve some of these problems. Acoustic tags provide unique individual ID codes at
an ultrasonic frequency, which are then detected and recorded by acoustic receivers
deployed in the area of interest. By matching detection locations of fish species with
environmental conditions at proposed sites for tidal energy infrastructure, species
distribution models can be developed to predict the probability of species occurrence
at sites of current and planned tidal power development. This information can be used to
develop statistically robust encounter rate models to aid in quantifying the risk of tidal
power development to migratory fish species. We used this approach to develop a
predictive model of striped bass (Morone saxatilis) distribution within Minas Passage in the
upper Bay of Fundy, Nova Scotia. Model results suggested increased probability of
striped bass presence in Minas Passage during late ebb tide conditions and at relatively
high water temperatures. We demonstrate the potential utility of species distribution
modeling of acoustic tag detections in predicting interactions with renewable energy
infrastructure, and show the importance of physical oceanographic variables influencing
species distributions in a highly dynamic marine environment.

Keywords: species distribution analysis, tidal stream energy impact, acoustic telemetry, minas passage, boosted
regression tree (BRT) models, striped bass (Morone saxatilis), encounter risk
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INTRODUCTION

Tidal stream power has an opportunity to significantly
contribute to the transition to renewable energy for coastal
communities in the vicinity of extreme tidal environments.
Development is already occurring in northern Scotland and is
being explored in parts of the Bay of Fundy in US and Canadian
waters (Sparling et al., 2020; Copping et al., 2021). The Minas
Passage in the upper Bay of Fundy has particularly high potential
for significant power generation, with some estimates suggesting
turbines in the area could extract over 2.5 GW of power each
tidal cycle (Karsten et al., 2008).

While in-stream tidal power generation lacks the large-scale
environmental consequences of fossil fuels and does not affect
access to essential habitat as much as dam-based riverine
hydropower, tidal power generation may have the potential for
harmful interactions with marine species including collisions
between animals and rotating turbine blades (Sparling et al.,
2020; Copping et al., 2021). In Canadian waters, documenting
and mitigating potential harm to fish species is a requirement for
permitting the deployment of tidal turbines and other power
generation structures under the Canadian Environmental
Assessment Act, Fisheries Act, and Species at Risk Act. Globally,
some research has been done to assess the potential for collision
risk with tidal turbines, though typically this has focused on
marine mammals (Gillespie et al., 2021; Onoufriou et al., 2021).
The risk of collision is typically framed as an encounter risk,
defined as the risk of an individual animal or group of animals
entering the turbine’s area of effect and presumably either
colliding with the turbine or executing some kind of avoidance
behavior (Wilson et al., 2007). Encounter rate modeling has
traditionally been derived from predator-prey encounter models
originally developed by Gerritsen and Strickler (1977) with
turbine swept-area representing the area of potential encounter
with the “predator.” This approach provided a framework that
has been adapted to collision risk modeling (Wilson et al., 2007).
However, because different species transiting through areas
where they may encounter tidal stream turbines are likely to
differ in their movement patterns, density, and avoidance
behaviors, there is a need for species-specific information on
potential encounter rate with tidal power infrastructure.

Species-specific information on spatial and temporal fish
distributions in high-energy environments are lacking due to
the impracticality of most fishing activities and fishery-
independent survey methods in these areas. Hydroacoustic
methods have been used to measure baseline fish densities at
potential tidal power sites in the Bay of Fundy (Viehman et al.,
2015) but it is difficult to translate these data to species-specific
presence/absence or abundance data without accompanying
trawl survey data to cross-reference acoustic targets. Typical
fishery-independent survey methods such as stratified trawling
and gillnetting are impossible and likely hazardous in Minas
Passage. This leaves intertidal fishing weirs along the margins of
the passage as the only practical fishing method that could be
used to sample finfish in the immediate area (Dadswell et al.,
2020). However, there has been extensive tagging of multiple
species with acoustic transmitters in the area through the
Frontiers in Marine Science | www.frontiersin.org 2
activities of various institutions, including Fisheries and
Oceans Canada (DFO), The Mi’kmaw Conservation Group
(MCG), Acadia University, and Dalhousie University, as well
as by international researchers tagging highly migratory species
outside of the vicinity of Minas Basin. Deployment metadata,
including species and tagging location and tag detection data for
many of these projects, are stored on the database of the Ocean
Tracking Network (OTN), which organizes acoustic telemetry
data with the goal of facilitating collaborative data sharing
agreements among individual researchers and projects (Iverson
et al., 2018). Acquiring cooperative agreements with researchers
conducting acoustic telemetry research on species of fishery and
conservation interest in Minas Passage to pool and use their data
on species presence and movements provides an unprecedented
opportunity to advance our understanding of potential
interactions between tidal stream power and fishes.

Acoustic telemetry requires both the transmitters carried by
the animals and deployment of receivers to detect the ultrasonic
signals. While individual receivers or small arrays of receivers are
capable of local tracking, large-scale receiver networks like the
OTN and its associated regional nodes allow for tracking at large
regional or even continental spatial scales (Bangley et al., 2020b).
With this rich scale of data available, it is possible to match tag
detections with environmental data to generate predictive species
distribution models, which can be used to predict the probability
of species presence based on environmental conditions (Bangley
et al., 2020a). If both acoustic tag detections and environmental
data are recorded in the local area around proposed tidal stream
turbine deployment, we suggest it is possible to use this approach
to predict the probability of species of interest co-occurring in
space and time with tidal stream turbines. Here we demonstrate
this approach for a single species using multiple years of
environmental and hydrodynamic data recorded in Minas
Passage and matched with tag detections of striped bass
(Morone saxatilis).
METHODS

Study Area
The Minas Passage connects Minas Basin to the greater Bay of
Fundy and the rest of the Gulf of Maine. At only 5 km in width,
Minas Passage represents the only path for both tidal currents
and marine species. During both flood and ebb tide, tidal
currents are forced through the passage at velocities that can
exceed 5 m/s (Karsten et al., 2011). Due to this high-energy
environment, most of the bottom habitat is made up of exposed
bedrock and boulder habitat. A volcanic plateau rises to a near-
uniform depth off the north shore of Minas Basin near Black
Rock. Due its relatively consistent bathymetry and position in
some of the strongest tidal currents it makes up the majority of
the area within the Crown Lease Area (CLA) overseen by the
Fundy Ocean Research Centre for Energy (FORCE) (Figure 1).
The CLA was established to assess the viability of tidal power
development in Minas Passage and is an active site of research
and monitoring related to the establishment of tidal
stream power.
July 2022 | Volume 9 | Article 851757

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Bangley et al. Fish Distribution and Marine Renewables
Minas Passage is the only point of entry and exit for most
migratory species that occupy Minas Basin (CSAS, 2018). This
includes transient species such as Atlantic sturgeon (Acipenser
oxyrinchus) and sharks as well as anadromous species that spawn
in the freshwater tributaries of Minas Basin. These anadromous
species include alewife (Alosa pseudoharengus), American eel
(Anquilla rostrata), American shad (Alosa sapidissima), Atlantic
tomcod (Microgadus tomcod), and striped bass. Aside from their
ecological importance, these species are economically and
culturally significant to local communities.
Focal Species
The Minas Basin population of striped bass spawns in the
Shubenacadie River and Grand Lake, Nova Scotia and is
considered the northernmost confirmed breeding population
for the species (Bradford et al., 2015). A portion of the
population remains within Minas Basin year-round and
overwinters in Grand Lake, while some larger individuals
forage within and transit through Minas Passage on larger-
scale coastal migrations (Paramore and Rulifson, 2001;
Rulifson et al., 2008; Bradford et al., 2015). Sub-adult and adult
striped bass are found throughout Minas Passage from May to
October but depart over the course of October as they migrate to
overwintering habitats in Grand Lake or the greater Bay of Fundy
(Kendall et al., 2018). Oceanic migration in this population has
been confirmed through otolith microchemistry and correlates
with differences in coloration and diet from individuals that
overwinter in freshwater habitats, with likely ocean migrants
making up at least 25% of striped bass found in the Shubenacadie
River (Paramore and Rulifson, 2001). However, acoustically
Frontiers in Marine Science | www.frontiersin.org 3
tagged striped bass have been detected on receivers in Minas
Passage during winter at what would be expected to be lethal
temperatures (Keyser et al., 2016). The Bay of Fundy striped bass
population is designated as Endangered by the Committee on the
Status of Endangered Wildlife in Canada (COSEWIC), and as
the only currently confirmed spawning population in the Bay of
Fundy, Minas Basin striped bass are of high conservation interest
and potential ecological importance (Bradford et al., 2015).
Initial Range Testing
To measure the potential effect of current velocity on tag
detection efficiency and range, we deployed five receiver
stations equipped with VR2 69-kHz receivers and two sentinel
tag stations with 69-kHz transmitters in a line perpendicular to
the prevailing current direction (Supplementary Figure S1).
Receiver stations were deployed with approximately 50 m
spacing between stations and sentinel tag stations were
deployed 75 m from either end of the receiver line. Receivers
and sentinel tags were mounted to the posterior tail assembly of
streamlined sub-surface floats designed to pivot and orient into
the prevailing current. Each sub-surface float was anchored using
a 500-lb single anchor chain link connected using a 2-m length of
riser chain. The range test was conducted within the CLA from
April 9th to May 11th, 2021 and was timed to match a full
monthly tidal cycle. Signed current velocity at each station was
derived from the FVCOM model (Chen et al., 2006) in 10-
minute increments for the entirety of the deployment period.

The sentinel tags were Innovasea V13 or V16 69-kHz
transmitters and transmitted at randomized 1140-1320-second
intervals. Power level was 143 dB for the V13 transmitter and 158
FIGURE 1 | Study area within Minas Basin in the upper Bay of Fundy, including receiver locations with mean number of striped bass detected during October-
December 2017-2020, the borders of the FORCE Crown Lease Area (CLA), and the boundaries of the area where species distribution model results will be mapped.
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dB for the V16, comparable to the power levels of tags deployed
on striped bass used in this study. Detection efficiency was
calculated as the percentage of expected transmissions that
were detected on each receiver and matched with the current
velocity at time of detection and the distance between the
receiver and the sentinel tag. These data were used to
interpolate a matrix of detection efficiency as a function of
current velocity and distance.

Model Overview
We used boosted regression tree (BRT) analysis to model the
probability of striped bass presence based on hydrodynamic
conditions in a section of Minas Passage. BRT analysis is ideal
for species distribution modeling because it is insensitive to most
error distributions common in ecological data, multicollinearity
of explanatory variables, and outliers (Elith et al., 2008; Dormann
et al., 2013; Dedman et al., 2017). These features allow BRT
analysis to be among the best-performing approaches to
predictive species distribution modeling (Valavi et al., 2021).
We performed our analysis in R version 4.1.2 (R Core Team,
2021) using the package gbm.auto, which automates many of the
analytical and mapping steps (Dedman et al., 2017). In the
following paragraphs we briefly summarize BRT modeling
procedures, but for a more detailed description of each step
and the underlying statistical theory see Elith et al. (2008) and see
Dedman et al. (2017) for details on how each stage is performed
in the gbm.auto package.

BRT analysis is a form of regression tree modeling, which
divides data based on cut points in the range of each explanatory
variable that result in reduced variance in the resulting sub-
groups, referred to as branches. The number of branches at each
split, or division at a cut point, is defined by tree complexity (tc)
and splits typically occur at divisions between greater and lesser
values of the response variable. Boosting reduces the variance of
individual regression tree models by iteratively replicating trees
through a stagewise machine learning process in which
information from the previous tree is used to reduce the
deviance in the next. The learning rate (lr) of a BRT model
represents the contribution of each individual tree to reducing
the deviance in the next. At each tree iteration, a portion of the
data referred to as the bag fraction (bf) (Elith et al., 2008) is
randomly selected and used to cross-validate the remainder of
the data, which are used to train the model. This process is
repeated until there is no longer significant deviance between
successive tree iterations. Generally, a minimum of 1,000 tree
iterations is considered sufficient to allow the model to reach the
minimum possible deviance (Elith et al., 2008).

When applied to spatial species distribution modeling, BRT
analysis requires two types of data: samples and grids (Dedman
et al., 2015). Samples data include both the response variable and
explanatory variables matched in space and time. These data are
used to investigate the relationships between the response and
explanatory variables and train the predictive model. Grids data
are explanatory variable data recorded or interpolated in a
regularly-spaced grid across the area of interest for the species
distribution model. The predictive model generated from the
samples data is applied to the grids data, generating predictive
Frontiers in Marine Science | www.frontiersin.org 4
map surfaces showing predicted values of the response variable
across the area of interest (Dedman et al., 2015; Dedman
et al., 2017).

Samples Data
In this model, our samples data included hourly presence/
absence of acoustically-tagged striped bass at acoustic receivers
as the response variable, and physical/environmental variables
derived from FORCE surface water flow radar, current speed/
water flow model data, and other sources matched to acoustic
receiver locations each hour as the explanatory variables. The
measurements used as explanatory variables in this model were
sea surface height (m), sea surface height gradient, divergence of
horizontal velocity, vorticity, signed water current velocity (m/s),
bathymetry standard deviation (m), and water temperature (°C).

Hydrodynamic variables (u and v velocity components, sea
surface height, sea surface height gradient, divergence, vorticity)
were derived from water surface wave field data collected by two
overlapping X-band radar installations covering Minas Passage:
one at the FORCE test site and one on the end of Cape Sharp.
Data were collected during periods when the wave field was
coherent. Radar data were collected during December 2020-April
2021, covering four full tidal cycles. Current velocity components
were extracted from the wave field using the Geometric Current
Triangulation (GemCuT) algorithm (Bell and McCann,
unpublished as cited by Locke, 2019) and computed on a
regular 150 x 150-m grid covering the study area at a 20-min
temporal resolution. Gaps in the radar data set were filled using
unified tidal analysis and prediction/harmonic analysis
(Codiga, 2011).

All radar-derived measurements were validated using the
FORCE region hydrodynamic model and concurrent acoustic
Doppler current profi ler (ADCP) data. The FORCE
hydrodynamic model uses the Finite Volume Community
Ocean Model (FVCOM) as model solver (Chen et al., 2006)
and has itself been validated against an extensive number of
acoustic Doppler current profilers (ADCPs) deployed in the
region (FORCE, unpublished data). Hydrodynamic conditions
in Minas Passage are relatively consistent over the course of a
tidal cycle and radar data covered most of the tidal variability
seen historically (FORCE, unpublished data). Because of this, we
were able to hind-cast radar-derived metrics over our study time
period using relationships between tide stage, sea surface height,
and the other hydrodynamic metrics to predict variable values
from historically modeled and recorded sea surface height data.

Signed current velocity (referred to as current velocity from
here) was calculated using the u and v velocity components
derived from the FORCE radar data in equation 1:

vel = u2 + v2
� �

*s

where s is 1 or -1 based on the current direction. Current
direction was assigned by calculating the direction angle from
the u and v velocity components using equation 2:

dir   angle = 180 +  
180

p tan−1 u, vð Þ½ �
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Based on the prevailing current directions in Minas Passage
(Viehman et al., 2019), directional angles between 30 and 205°
represented an incoming tide and assigned 1 for s in equation 1,
while directional angles greater than 205° or less than 30°
represented an outgoing tide and assigned -1 for s in equation 1

Bathymetry standard deviation was derived from high-
resolution (2 m) multibeam sonar data collected through the
Minas Passage and was assumed to be constant at each samples
and grids location across the entire time frame of our study.
Temperature was recorded by onboard sensors on four
Innovasea HR2 acoustic receivers deployed in the vicinity of
the CLA. Temperatures from all four receivers were compared
and any measurements from a single receiver with a difference in
standard deviation greater than 1°C were considered anomalous
and removed. After removal of anomalous temperatures nearly
all temperatures were within 1 SD of the others, which we
interpreted as supporting the assumption that temperature
would be constant throughout the modeled area due to the
Minas Passage being an extremely well-mixed system. We
applied the mean temperature recorded on the HR receivers
uniformly across the modeled area. Except for bathymetry
standard deviation, these variables were summarized by hour
and matched with the date, hour, and location of each receiver.

All variables in the samples data were tested for
multicollinearity using a pairwise Pearson’s correlation test.
This was conducted using the corr.test function in the R
package psych (Revelle, 2022). We used thresholds of
correlation strength from Dormann et al. (2013) to assess
whether collinearity was occurring. If strong correlation was
found between pairs of variables, model runs with one of the
variables dropped were used to determine the effect of removing
the variable on model performance.

Both striped bass tag detections and environmental data
covered the time period of fall through early winter, which was
a period during which seasonal changes in the use of Minas
Passage by striped bass are expected, including the outward
migration of the portion of the population that leaves Minas
Basin (Rulifson et al., 2008). This time period covered the dates
of October 1st through December 31st and within the years 2017-
2020. During this time period, receivers were deployed at 86
stations within the study area (Figure 1). For each receiver, only
the hours that individual receiver could be confirmed to have
been in the water based on deployment and recovery dates and
times from the OTN database were included in our analysis.
Deployment periods during which the receiver was recovered
from a location other than the most recent deployment location
(i.e. due to detaching from the mooring and being recovered
elsewhere) were removed from analysis due to our inability to
confirm the receiver’s location for the full deployment. Striped
bass were tagged at their spawning grounds in the Shubenacadie
River with Innovasea V16 model 69-kHz transmitters
(Innovasea, Halifax, Nova Scotia) surgically implanted into the
body cavity, as part of Fisheries and Oceans Canada (DFO)
studies on movements within Minas Basin. Tagging occurred
during 2016-2018, and primarily targeted individuals greater
than 60 cm fork length. The tagged fish were detected on
Frontiers in Marine Science | www.frontiersin.org 5
Innovasea VR2W 69-kHz receivers deployed in Minas Passage
during the study period (Figure 1). Striped bass tag detections
were summarized as the total number of unique individuals
detected during each hour at each receiver, and we assumed that
hours during which no individuals were detected represented
absence of the species.

Grids Data
Grids data were derived from the same data sources as the
samples data and mapped across an area of Minas Passage in
which radar data were consistently high quality (southwest
corner 45.33990/-64.46124, northeast corner 45.37634/-
64.37122) (Figure 1). Grid cell size was 150 x 150 m, which
corresponds to the average spatial resolution of the FORCE radar
data. Eight grids were generated, each representing the average
conditions during slack high, early, mid, and late ebb, slack low,
and early, mid, and late flood tide stages in October. The grids
used for this demonstration represented mean conditions during
each of these tide stages, based on the values of each explanatory
variable in each grid cell between October 1st and 31st from 2009
through 2020.

Because Minas Passage is subject to eddies and other complex
hydrology, tide stages were defined using a combination of
signed current velocity and sea surface height at a single
common datum located centrally in the passage (45.34392/-
64.32384). Signed current velocity and sea surface height data
were obtained at this location by extracting the values nearest to
this point from the environmental grids using the filter function
from the R package dplyr (Wickham et al., 2021). Based on
histograms of current velocity frequency, we classified current
velocities between -1.0 and 1.0 as the slack range and defined tide
stages as follows: slack high tide was defined as velocity within
the slack range with a sea surface height greater than 2 m, slack
low tide was defined as velocity within the slack range with sea
surface heights less than -2 m, ebb tide was defined as any
negative velocity value outside the slack range, and flood tide was
defined as any positive velocity value outside the slack range.
Flood and ebb tide were further divided into early, mid, and late
stages to capture the variation within these parts of the tidal
cycle. Current velocity less than -2.5 m/s during ebb tide denoted
mid ebb stage, current velocity greater than -2.5 m/s with sea
surface height greater than 0 m denoted early ebb stage, and
current velocity greater than -2.5 m/s with sea surface height less
than 0 m denoted late ebb stage. During flood tide, current
velocity greater than 2.5 m/s denoted mid flood, less than 2.5 m/s
with sea surface height less than 0 m denoted early flood, and
velocity less than 2.5 m/s with sea surface height greater than 0 m
denoted late flood stage.

BRT Model Training and Evaluation
Once samples and grids data were prepared, we performed BRT
model training and results mapping using the R package
gbm.auto (Dedman et al., 2017), which automates most of the
necessary steps. A binary presence/absence BRT model was used
to predict the probability of striped bass presence in each of the
four grids. The model was trained by testing combinations of
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initial tc, lr, and bf values until the best-performing model was
found. Models that generated at least 1,000 tree iterations were
evaluated based on the cross-validation score (CV score), mean
deviance, and % deviance explained, with the model showing the
greatest CV score and % deviance explained and the lowest mean
deviance selected as the best-performing model. To assess the
potential for model overfitting, we observed the difference
between the cross-validated area under operator curve (CV
AUC) and training area under operator curve (training AUC),
with lower differences indicating lower likelihood of overfitting
(Hijmans and Elith, 2013).

Marginal effect plots were generated from themodel results and
used to illustrate the relationships between striped bass presence
probability and each explanatory variable. The relative influence of
each explanatory variable was measured as the percentage of tree
splits attributed to that variable. Mapped results showed the
probability of at least one striped bass being present in each grid
cell. To determine how representative the hydrodynamic data used
to train the model were of the conditions found in the grids data,
maps of “unrepresentativeness” were generated, indicating how
dissimilar each grid cell was to the conditions in the samples data.
RESULTS

A total of 69 unique individual striped bass were detected within
Minas Passage during October-December 2017-2020, accounting
for 254 hourly presence records. Response variable distributions
varied (Figure 2): sea surface height and sea surface height
gradient showed upper and lower peaks, while temperature
skewed towards higher values and while bathymetry standard
deviation towards the lower values. Current velocity metrics
showed a relatively normal distribution and vorticity and
divergence values were mostly grouped close to 0 (Figure 2).

Multicollinearity tests showed significant (p < 0.001) but weak
(r < 0.2) correlations between current velocity and sea surface
height, sea surface heigh gradient, vorticity, and divergence
(Table S1). Vorticity and divergence both showed a significant
(p < 0.001) and strong (r > 0.9) correlation, as did sea surface
height and sea surface height gradient. Removal of either variable
in each pair led to a decline in model performance based on CV
and AUC values, so all variables were left in the final model.
Pairwise correlations between all other variables were both
insignificant (p > 0.05) and weak (Table S1).

Detection efficiency was greater than 60% at least as far as
350 m at low current velocities, but tapered off quickly as current
speed increased on both flood and ebb tide (Supplementary
Figure 2). Relatively high detection efficiency to at least 150 m
occurred at current velocities up to -2.0 m/s during ebb tide and
2.5 m/s during flood tide, and was functionally zero at velocities
beyond -3.0 m/s at ebb tide and greater than 3.5 m/s at flood tide.
Detection efficiency appeared to reach zero at a lower current
velocity during ebb tide but initially tapered off more sharply
during flood tide (Supplementary Figure 2).

The best performing BRT model had a tc of 7, lr of 0.001, and
bf of 0.60, and generated 1950 tree iterations (Table 1). Training
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and CV AUC values showed a difference of less than 0.094,
indicating that overfitting was unlikely. A CV score of over 0.77
was indicative of good performance, and the model explained
66.77% of the deviance (Table 1).

Temperature was the most influential variable, accounting for
24.1% of tree splits, followed by bathymetry standard deviation
(18.9%), current velocity (15.4%), vorticity (14.6%), and sea
surface height (13.3%) (Figure 3). Temperatures greater than
approximately 12°C had a positive effect on presence
probability, which peaked at 14°C. Bathymetry standard
deviation had a negative effect between 3 and 10 m, but
relatively lower and higher values had a positive effect. Current
velocities associated with ebb tide (< 0 m/s) and vorticity less than
-0.05 and greater than 0.05 had positive effects on presence
probability. Sea surface height had a small but positive effect at
values associated with near slack low (-4 to -6 m) and slack high (4
to 6 m) conditions (Figure 3).

Maximum presence probability rarely exceeded 0.4 except
during late ebb tide, with areas of relatively higher presence
probability generally distributed close to shore around Cape
Sharp or south of the CLA in the main channel (Figures 4, 5).
The generally low presence likelihood likely reflected the effect of
temperature on striped bass presence during October. Areas of
relatively greater or lower striped bass presence probability
varied between tide stages. During the outgoing tide
(Figures 4A–D), areas of elevated presence probability were
distributed close to shore around Cape Sharp and into West Bay
at the early ebb stage, increased to peak presence probability
across a broader area by late ebb tide, and reduced at slack low
tide. During the outgoing tide (Figures 5A–D), presence
probability reduced during early flood stage and was relatively
low throughout the study area through slack high tide. Striped
bass presence probability within the CLA was relatively low
during all tide stages, though it was elevated in small areas to the
north and southwest of the CLA boundary (Figures 4, 5).

Unrepresentativeness was generally low to moderate
(approximately 0.15-0.4) across most of the modeled area, indicating
that samples datawere fairly representative of environmental variation
(Supplementary Figures 3, 4). Unrepresentativeness was generally
lowest near shore and, during the mid flood through early ebb tide
stages, extending into the channel off the end of Cape Sharp.
Unrepresentativeness was greatest in the middle of the channel
during all tide stages (Supplementary Figures 3, 4).
DISCUSSION

Overall our model performed well and produced results that are
realistic in the context of local striped bass ecology. BRT
marginal effect plots suggested an increased probability of
striped bass presence at warmer temperatures, bathymetry at
very low or high complexity, and velocity, vorticity, and sea
surface height conditions associated with ebb tide. Mapped
results reflected these relationships with the greatest maximum
presence probability occurring during late ebb tide, with a
general rise in presence probability during ebb tide and fall by
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early flood tide. Mapped results also showed relatively low
presence probability within the CLA during all tide stages with
areas of greater presence probability occurring along shore and
farther out in the open passage, though discrete areas of elevated
presence probability were distributed just outside the boundaries.

Temperature was the most influential variable on the model,
reflecting its clear role as an essential biological driver of striped
bass movement from Minas Basin. Informed by the initial
analysis of temperature records from four HR receivers, we
assumed the relatively uniform temperature throughout Minas
Passage was due to the high energy mixing of water. The
relationships identified by the model between striped bass
presence probability and temperature are likely to be broadly
applicable in the study area. To our knowledge, no study thus far
has documented stable and predictable temperature micro
regimes in the study area that would contradict this
assumption and our analysis seems to support it. Our model
Frontiers in Marine Science | www.frontiersin.org 7
showed a sharp increase in striped bass presence probability at
temperatures greater than 12°C, suggesting that the species
should be more likely to occur within Minas Passage at
relatively warm temperatures. This apparent threshold
response occurred at a considerably warmer temperature than
the lower incipient lethal range for striped bass from the local
population (approximately 0-2°C) but may be as close to
thermally optimal conditions for striped bass as possible
during October (Coutant et al., 1984; Cook et al., 2006). It is
worth noting that 35% of striped bass tagged by Keyser et al.
(2016) were detected in the Minas Passage in the winter months
of December-March. The species may show a different
relationship with hydrodynamic conditions at lower
temperatures later in the winter. Season-specific modeling
should be performed to determine whether the relative
importance and effects of environmental variables change
between seasons.
A B C

D

G

E F

FIGURE 2 | Histograms showing the frequency of explanatory variable values from training data used to develop the final boosted regression tree model of striped bass
presence probability during October-December 2017-2020. Variables are (A) sea surface height, (B) sea surface height gradient, (C) temperature, (D) bathymetry
standard deviation (SD), (E) current velocity, (F) vorticity, and (G) divergence.
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Bathymetry standard deviation was the second most influential
variable, with increased striped bass presence probability at
considerably lesser and greater bottom complexity than the
most commonly occurring measurements. This may represent
two different habitat use patterns within Minas Passage. The
preference for less-complex bottom habitat may reflect midwater
foraging or travel through the passage during seasonal migrations,
while occurrence at more complex habitats may represent foraging
for benthic prey or sheltering behavior. American lobster
(Homarus americanus) is an important prey species for large
adult striped bass (Nelson et al., 2003). Lobster occur in Minas
Passage (CSAS, 2018) and may be more available in complex
bottom habitat. A portion of the striped bass used to develop this
model carry transmitters equipped with depth sensors, and further
analysis of the fish’s position in the water column relative to
TABLE 1 | Starting parameters and evaluation metrics for the best-performing
boosted regression tree model.

Parameter/Metric Value

Tree complexity 7

Learning rate 0.001

Bag fraction 0.60

N trees 1950

Training AUC 0.999

CV AUC 0.905

Training – CV AUC 0.094

CV score 0.771

% deviance explained 66.77
AUC, area under operator curve, which is shown for both the training and cross-validation
(CV) data.
FIGURE 3 | Marginal effect plots showing relationships between striped bass presence probability and each explanatory variable. Percentages next to variable
names are the percent of tree splits attributed to that variable.
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bathymetry standard deviation may provide deeper insight into
striped bass habitat use within Minas Passage.

Variables directly related to tidal forces in Minas Passage,
including current velocity, vorticity, and sea surface height were
similarly influential, suggesting that tidal forces play an
important role in local fish distributions. Predicted presence
probability was most positively influenced by ebbing current
velocities, relatively high vorticity, and the highest and lowest sea
surface heights. Combined, these suggest that striped bass are
more likely to be present in Minas Passage during the later stages
of ebb tide. This may represent striped bass taking advantage of
outgoing tidal currents during their fall outward migration while
selecting for less extreme currents to maintain control over their
swimming speed and direction. Such conditions are likely less
energetically demanding on swimming performance and may
represent periods during which striped bass are able to most
efficiently emigrate from Minas Basin. During all tide stages,
areas of relatively high presence probability were distributed
close to shore, particularly near Cape Sharp and within West
Bay. These areas may be refuges or staging areas for striped bass
during higher-energy tide stages. These near-shore areas are also
the sites of the most complex eddies in the study area, which may
be the reason for the positive relationship between striped bass
presence probability and relatively turbulent water. In open
ocean environments, mesoscale eddies can create complex
horizontal boundaries that aggregate prey and attract larger
Frontiers in Marine Science | www.frontiersin.org 9
predators (Godo et al., 2012). Eddies and wakes are created
consistently in the vicinity of Cape Sharp during each tidal cycle,
which may similarly attract striped bass and other large, mobile
predators in Minas Passage.

Broome et al. (2015) noted few striped bass tag detections at
current speeds greater than 3 m/s. This may be due to behavioral
avoidance of high-flow conditions, but could also be an artifact of
reduced tag detection efficiency at greater current velocities
(Sanderson et al., 2017). Our own range testing confirmed a
sharp reduction in tag detection efficiency at current speeds
greater than 2.5 m/s during both ebb and flood tide. Future
model iterations will explore this in greater detail and
incorporate tag detection efficiency directly into predictions of
presence probability.

Mapped predictions suggest that during October the
probability of this species overlapping in space and time with
tidal power devices deployed in the CLA should be relatively low.
Areas of relatively elevated presence probability just outside the
CLA boundaries are most likely due to bottom habitat
complexity at the edges of the volcanic plateau. Widespread
striped bass occurrence within the CLA is most likely during late
ebb tide, but even during this tide stage the greatest presence
probability does not exceed 0.05. It should be noted that these
predictive maps represent a static snapshot of presence
probability during average environmental and hydrodynamic
conditions in each tide stage, and do not account for movement
FIGURE 4 | Mapped boosted regression tree model result showing striped bass presence probability in Minas Passage during ebb tide at (A) early ebb, (B) mid
ebb, (C) late ebb, and (D) slack low tide stages.
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trajectories of individual fish. Therefore, these maps should be
used to assess the probability of striped bass co-occurring in
space and time with a tidal power device under a given set of
conditions and represents the most basic assessment of potential
encounter risk. In locations where fish and tidal stream devices
are predicted to overlap, a more fine-scale analysis incorporating
the vertical position and movement behaviors of the fish and the
physical characteristics of the tidal stream device (height off the
bottom, swept area, rotation speed, etc.) should be undertaken to
assess the true risk of encounter or collision (Wilson et al., 2007).
This modeling approach provides a method of assessing
potential overlap at relatively large spatial scales and will help
narrow down locations and times where more detailed encounter
risk assessment is needed.

While all the variables used in this model have plausible
ecological explanations for their relationships with species
presence, we were limited by those variables that were available
with sufficient spatial and temporal coverage for use in the
model. Ideally, we would have included variables such as
salinity, dissolved oxygen, and turbidity, but these data were
not available for Minas Passage at the spatial and temporal scales
needed for this modeling effort. The combination of variables we
were able to use provided ecologically plausible results, but there
is the possibility that variables we were unable to include may
have important influences on the distribution of striped bass and
Frontiers in Marine Science | www.frontiersin.org 10
other species in Minas Passage. Should sufficient data for other
variables become available, they will be included in future
model iterations.

Some of our variables showed strong and significant
correlation but dropping them from the model caused a
decline in model performance. This suggests that while all
hydrodynamic and environmental variables likely interact in
some way within Minas Passage, each variable had at least
some independent influence on striped bass presence
probability. Such situations are common in ecological studies,
where correlation does not necessarily mean collinearity and the
true relationships between variables require interpretation based
on how they interact in the study system (Dormann et al., 2013).

In this demonstration, we have made two key assumptions:
transmissions from tagged fish are equally likely to be detected in
all environmental conditions including tide stage, and
environmental associations of tagged fish are representative of
the general habits of the species and population. Our first
assumption is likely violated by the dynamic nature of the
Minas Passage environment. Current speed and turbulence can
reduce the detection efficiency and range of acoustic
transmissions by increasing ambient noise or by pushing the
fish through the receiver’s detection range before the tag’s
intermittent transmission can be detected (Sanderson et al.,
2017). When building a model of presence probability, this is
FIGURE 5 | Mapped boosted regression tree model result showing striped bass presence probability in Minas Passage during flood tide at (A) early flood, (B) mid
flood, (C) late flood, and (D) slack high tide stages.
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problematic because it reduces the likelihood that all actual fish
presences are documented and that a lack of detection represents
a true absence. Our initial range testing shows that detection
efficiency declines sharply at current velocities greater than 2-
2.5 m/s associated with both peak ebb and peak flood tide stages,
though it may be relatively reliable at current velocities occurring
during other tide stages. Therefore, mapped presence probability
results are likely more reliable during slack, early, and late tide
stages than during peak flood and ebb tide. However, Minas
Passage is a complex environment, and finer-scale currents and
eddies likely mean that detection efficiency will vary spatially at any
tide stage. We continue to conduct long-term range testing to assess
detection efficiency of acoustic transmitters at varying distances
from receivers under as close to the full spectrum of hydrodynamic
conditions in Minas Passage as possible. In future model iterations,
the results of this range testing will allow us to better measure the
uncertainty of the predicted presence probabilities from our models,
and to make any necessary adjustments to the modeling approach
and receiver deployment strategy.

The second assumption, that the behavior of tagged fish is
representative of the general population, is likely only true for the
proportion of large adult striped bass that either forage in Minas
Passage or make seasonal migrations out of Minas Basin to the
ocean. For striped bass, currently available data suggest this may
represent the only portion of the population that regularly occurs
in Minas Passage (Paramore and Rulifson, 2001; Rulifson et al.,
2008), but direct comparison with tag detections of smaller
individuals will be necessary to confirm. Moving forward, this
assumption will be tested by incorporating new tag detections
that have been recorded since the completion of model training,
including new transmitter deployments on species of interest,
particularly demographics that are not well-represented in
current or historical tag detection data. These new tag
detection locations will be compared with predictive SDM
maps to determine whether these detections that were not part
of the original model training fall within or near areas of greater
predicted presence probability. This will be used to validate
model predictions, and new tag detections may also be
incorporated into new model iterations to determine if this
improves predictive performance.

As of this writing, our range testing and follow-up tagging
studies testing model assumptions are underway but not
complete. Therefore, current model results for assessing the
risk of potential encounter with tidal stream turbines in Minas
Passage are preliminary and should be used with caution until
they have been sufficiently validated. This work has
demonstrated a model providing testable predictions of animal
distributions based on acoustic tag detections in a highly
dynamic environment. The model’s initial predictions seem
realistic in the context of local striped bass ecology during the
autumn study period. The expansion of the work to include data
from other species and yearly seasonal cycles will provide a
generalized tool useful to tidal power developers seeking to
quantify risk and eliminate or reduce the potential for negative
interactions between power infrastructure and marine species.
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Novel technologies for assessing the environmental and ecological
impacts of marine renewable energy systems
The continued expansion and worldwide adoption of renewable energy systems,

including marine renewable energy (MRE) technologies, is essential for addressing

climate change (IPCC, 2019; IRENA, 2020; IPCC, 2022). Globally, the amount of

potentially harvestable tidal stream and wave energy from nearshore areas is sufficient

to meet current worldwide energy demand (Mørk et al., 2010; IRENA, 2020). However,

the share of MRE in global electricity generation falls far short of this potential due to the

current small scale of deployments; typically, single devices or small-scale arrays. MRE

expansion to larger, commercial scales may contribute to addressing the climate crisis,

but is hampered by a variety of factors, including uncertainty about their environmental

effects (Neill et al., 2012; Kempener & Neumann, 2014a; Kempener & Neumann, 2014b;

Copping et al., 2016).

Environmental monitoring around MRE devices has typically relied on standard

oceanographic and remote-sensing instruments not intended for use in the complex

hydrodyna0mic conditions typical of tidal channels and the nearshore regions where MRE

development is planned (Hasselman et al., 2020). Exposure of environmental monitoring

instruments to dynamic marine conditions has revealed challenges that have stimulated

pioneering research and innovations in the technologies and approaches for understanding

the effects of MRE devices on marine ecosystems. This Research Topic has compiled

contributions from authors leading cutting-edge research advancing our understanding of

the environmental and ecological effects of MRE development, thereby facilitating the

expansion of the sector and accelerating progress in addressing the climate crisis.
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Advances inmachine learning are enhancing our understanding

of the environmental effects of MRE devices. Multibeam imaging

sonars and optical cameras are frequently used to monitor for

interactions of marine animals with MRE devices, but post-

processing is laborious, and the accurate identification of species

remains challenging. Using convolutional neural networks and

Kalman filters, Kandimalla et al. (2022) developed an automated

real-time deep-learning framework for the accurate detection,

tracking, species identification, and enumeration of fish recorded

using a DIDSON imaging sonar and optical cameras. This achieved

relatively high performance, though results were highly dependent

on the quality of training data. Although the method was developed

using data collected froma river and hydroelectric facility, it could be

applied to monitoring MRE devices with site-specific retraining.

Machine learning is also enhancing the application of

echosounders for monitoring fish in tidal channels. Turbulent

hydrodynamics can entrain air in the water column that must be

excluded before analyses, but the boundary of entrained air is

porous, and its penetration depth can vary, complicating its

identification and removal. Using echosounder data from tidal

channels in Nova Scotia, Lowe et al. (2022) applied a deep

learning approach to develop ‘Echofilter’ – a new model that

accurately (>95%) identifies the boundary of entrained air, and

reduces the post-processing time for raw echosounder data by

50%. Echofilter improves the standardization and repeatability

of this process by removing the subjectivity inherent to manual

post-processing.

It is also important to understand the implications of removing

data contaminated by entrained air on estimates of fish abundance

and distribution at MRE sites. Using echosounder data from Nova

Scotia,Viehmanet al. (2022) found little influenceof entrained air on

estimates offish abundance and vertical distribution from the lower

70% of the water column and during current speeds < 3 m/s.

However, the upper water column and faster current speeds were

under-sampled, limiting accurate quantification of fish abundance

and distribution at those times. These results highlight the value of

complementary technologies that monitor animal movements for

understanding potential environmental effects of MRE devices.

One of these technologies is acoustic telemetry. Bangley et al.

(2022) demonstrate an approach to develop a predictive species

distribution model for migratory fish species using fish

implanted with acoustic tags that can be detected at various

monitored locations. The authors matched physical

oceanographic variables with tag detections of the species at

receiver stations and used boosted regression tree analyses to

generate a predictive species distribution model for striped bass

in the Bay of Fundy. This framework can be applied to other fish

telemetry datasets, and turbine specific parameters can be

integrated to generate encounter rate models for quantifying

the risk of MRE devices.

The integration of complementary monitoring technologies

into subsea monitoring packages to facilitate continuous

operation over extended periods and provide monitoring data
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in real-time is a noteworthy advance in facilitating the expansion

of the MRE sector. Gillespie et al. (2022) describe the

development of a cabled subsea monitoring platform equipped

with high-frequency multibeam sonars and a tetrahedral array of

high-frequency hydrophones for monitoring the fine-scale

movements of marine mammals around operational tidal

stream turbines. The results proved the system to be highly

reliable, and the platform will be deployed close to an

operational turbine in 2022.

Work from tidal channels has improved our understanding

of how hydrodynamics can influence species distributions (e.g.,

turbulent features may increase the availability of prey to

predators). Knowledge of these associations is important for

understanding potential environmental effects of MRE

development. Slingsby et al. (2022) used drone imagery to

quantify associations of diving seabirds (auks) with turbulence

features. They found that auks primarily oriented themselves

across the flow, and that density distribution was influenced by

current velocity and tide phase, frequently coinciding with kolk-

boils at the sea surface. This work highlights the value of drones

for environmental monitoring and collection of seabird data that

is difficult using conventional survey methods.

Cost-effective and practical monitoring approaches are

needed to advance the MRE sector. Fraser and Waggitt (2022)

describe an approach for providing site-specific data on diving

seabird behavior and prey assemblages using shore-based

observation and baited fish traps. The information gathered

using this approach provides metrics that inform environmental

impact assessments and collision risk models for seabirds and

site-specific data on prey assemblages in a cost-effective manner

that will facilitate the responsible development of the

MRE sector.

The studies compiled herein highlight recent advances for

understanding the environmental and ecological effects of MRE

development. Additional innovations will be needed to help

facilitate the deployment of MRE devices at scales that can help

address climate change, and this should include social science

research on social, cultural and economic impacts.
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